Advertisement

The use of analogy in incremental SBL

  • Christel Vrain
  • Yves Kodratoff
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 347)

Abstract

Analogy is clearly one of the key issues of Learning, since it constitutes a major tool for constructing new concepts, or new rules or new strategies. Our view of analogy is that it must take into account not only the resemblances within a set of different datas but also the differences among them. We describe how to apply this view of the analogical process to incremental similarity-based learning.

Keywords

Analogy causal relation similarity dissimilarity Concept Learning from sets of examples incremental learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. (Carbonell 82).
    Carbonell J.G.: "Experiential Learning in Analogical Problem Solving", Proc. of the Second Meeting of the American Association for AI, Pittsburg, PA, 1982.Google Scholar
  2. (Chouraqui 82).
    Chouraqui E.: "Construction of a model for reasoning by analogy", Proceedings of the European Conference on Artificial Intelligence, pp. 48–53, Orsay, France.Google Scholar
  3. (DeJong 86).
    DeJong G., Mooney R. "Explanation Based Learning: an Alternative View", Machine Learning Journal, Volume 1, Number 2, 1986, pp 145–176.Google Scholar
  4. (Kodratoff 83).
    Kodratoff Y.: "Generalizing and Particularizing as the techniques of Learning", Computers and Artificial Intelligence 2, pp.417–441, 1983.Google Scholar
  5. (Kodratoff 86).
    Kodratoff Y., Ganascia J.G.: "Improving the Generalization Step in Learning", Machine Learning, an Artificial Intelligence Approach, vol. II, eds. Michalski R.S., Carbonell J.G., Mitchell T.M; Morgan Kaufmann Publishers, pp 215–244.Google Scholar
  6. (Michalski 83).
    Michalski R.S., "A theory and Methodology of Inductive Learning", Machine Learning, an Artificial Intelligence Approach, Michalski R.S., Carbonell J.G., Mitchell T.M. eds, Tioga Publishing Company 1983, pp. 83–129.Google Scholar
  7. (Mitchell 86).
    Mitchell T.M., Keller R., Kedar-Cabelli S., "Explanation Based Generalisation: An Unifying View." Machine Learning Journal, Volume 1, Number 1, 1986, pp 47–80.Google Scholar
  8. (Vrain 87).
    Vrain C.: "Un Outil de Généralisation Utilisant Systématiquement les théorèmes: le système OGUST", Thèse de troisième cycle soutenue le 25 Février 1987, Université Paris Sud, Orsay.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Christel Vrain
    • 1
  • Yves Kodratoff
    • 1
  1. 1.Equipe Inférence et Apprentissage, Bat. 490 Laboratoire de Recherche en Informatique, UA 410 CNRSUniversité de Paris SudOrsay CedexFrance

Personalised recommendations