Edge separators for planar graphs and their applications

  • Krzystof Diks
  • Hristo N. Djidjev
  • Ondrej Sykora
  • Imrich Vrto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 324)


We show that every planar graph with n vertices and a maximal degree k has an 0(√kn)-edge separator. This improves known results about edge separators of graphs with vertex degree bounded by a constant. We show that any n vertex tree of a maximal degree k can be divided into two parts of ≤ n / 2 vertices by removing 0(klog n/log k) edges. The sizes of both separators are existentially optimal. We apply the edge separator to average cost efficient embeddings of planar graphs of degree k into binary trees, meshes and hypercubes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BS]
    F. Berman, L. Snyder, On mapping parallel algorithms into parallel architectures, J. of Parallel and Distributed Computing, Vol.4, 1987, pp. 439–458.Google Scholar
  2. [Da]
    H.N. Djidjev, On the problem of partitioning planar graphs, SIAM J. Alg. Disc. Meth., Vol. 3, No. 2, 1982, pp.229–240.Google Scholar
  3. [Db]
    H.N. Djidjev, A Linear algorithm for partitioning graphs of fixed genus, SERDICA, Vol. 11, 1985, 369–387.Google Scholar
  4. [Dc]
    H.N. Djidjev, A separator theorem for graphs of fixed genus, SERDICA, Vol. 11, 1985, pp. 319–329.Google Scholar
  5. [DEL]
    R.A. De Millo, S.C. Eisenstat, R.J.L. Lipton, Preserving average proximity in arrays, Comm. ACM, 21, 1978, pp. 228–230.Google Scholar
  6. [Ga]
    H.Gazit, An improved algorithm for separating planar graphs, manuscript.Google Scholar
  7. [GHT]
    J.R.Gilbert, J.P.Hutchinson, R.E.Tarjan, A separator theorem for graphs of bounded genus, Journal of Algorithsm, No.5, 1984, pp. 391–398.Google Scholar
  8. [Gi]
    J.R.Gilbert, Graph separator theorem and sparse Gaussian elimination, Ph.D. thesis, Stanford University, 1980.Google Scholar
  9. [GM]
    H.Gazit, G.L.Miller, A parallel algorithm for finding a separator for planar graphs. In: Proc. 28-th. Foundations of Computer Science, IEEE, 1987, 238–248.Google Scholar
  10. [H]
    L.S. Heath, Embedding outerplanar graphs in small books, SIAM J. Alg. Disc. Meth., Vol.8, No.2, 1987, pp. 198–218.Google Scholar
  11. [HR]
    J. Hong, A.L. Rosenberg, Graphs that are almost binary trees, SIAM J. Comput., Vol. 11, No. 2, 1982, pp. 227–242.Google Scholar
  12. [J]
    M.A. Jordanskij, Minimal numberings of tree vertices, Probl. Kib., Vol. 31, 1976, pp.109–133 (in Russian).Google Scholar
  13. [JV]
    D.B. Johnson, S.M. Venkatesan, Partition of planar flows in networks. In: Proc. 24-th Ann. Symp. on Theory of Computing, ACM, New York, 1983, pp. 259–263.Google Scholar
  14. [LRT]
    R.J. Lipton, D.J. Rose, R.E. Tarjan, Generalized nested dissection, SIAM J. Numer. Anal., 16, 1979, 346–358.Google Scholar
  15. [Ls]
    C.E.Leiserson, Area efficient graph layout (for VLSI), In: Proc. 21-st Foundations of Computer Science, IEEE, Syracuse, 1980, pp. 270–281.Google Scholar
  16. [Lt]
    F.T. Leighton, A layout strategy which is provably good, In: Proc. 23-rd Foundations of Computer Science, IEEE, San Francisco, 1982, pp. 85–98.Google Scholar
  17. [LTa]
    R.J. Lipton, R.E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math., Vol. 36, No. 2, 1979, pp. 177–189.Google Scholar
  18. [LTb]
    R.J. Lipton, R.E. Tarjan, Applications of a planar separator theorem, SIAM J. Computing, Vol. 9, No.3, 1980, pp. 615–627.Google Scholar
  19. [Ml]
    G.L. Miller, Finding small simple cycle-separators for 2-connected planar graphs, J. of Comp. and System Science, Vol. 32, 1986, pp. 265–279.Google Scholar
  20. [Mo]
    B.Monien, The complexity of embedding graphs into binary trees, In: FCTo 85, LNCS 199, pp. 300–309.Google Scholar
  21. [Mt]
    S. Mitchel, Linear algorithm to recognize outerplanar and maximal outerplanar graphs, IPL, Vol. 9, No.5, 1979, pp.229–232.Google Scholar
  22. [Ra]
    S.Rao, Finding near optimal separators in planar graphs, In: Proc. 28-th Foundations of Computer Science. IEEE, 1987, pp. 225–237.Google Scholar
  23. [RH]
    S.S. Ravi, H.B. Hunt, An application of the planar separator theorem to counting problem, IPL, Vol. 25, No.6, 1987, pp.317–322.Google Scholar
  24. [Ri]
    D. Richards, Finding short cycles in planar graphs using separators, J. of Algorithms, Vol. 7, 1986, pp. 382–394.Google Scholar
  25. [Ro]
    A.L. Rosenberg, A hypergraph model for fault-tolerant VLSI processor arrays, IEEE Trans. on Computers, C-34, No. 6, 1985, pp. 578–584.Google Scholar
  26. [s]
    M.A. Scheidwasser, On the length and the width of embeddings of graphs in meshes, Probl. Kib., Vol. 29, 1974, pp.63–102 (in Russian).Google Scholar
  27. [Va]
    J.G. Valiant, Universality consideration in VLSI circuits, IEEE Trans. on Computers, C-30, No.2, 1981, pp. 135–140.Google Scholar
  28. [Vea]
    S.M.Venkatesan, Improved constants for some separator theorems, J. of Algorithms, to appear.Google Scholar
  29. [Veb]
    S.M.Venkatesan, On separating a planar graph into two halves, Submitted to SIAM J. of Discrete Mathematics.Google Scholar
  30. [Y]
    M. Yannakakis, Linear and book embeddings of graphs, in: Proc. Aegean Workshop on Computing, July 8–11, 1986, Lecture Notes in Computer Science, Vol. 227, Springer-Verlag, Berlin, 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Krzystof Diks
    • 1
  • Hristo N. Djidjev
    • 2
  • Ondrej Sykora
    • 3
  • Imrich Vrto
    • 3
  1. 1.Institute of InformaticsWarsaw University, PKiNWarsawPoland
  2. 2.Centre of Informatics and Computer TechnologyBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Institute of Technical CyberneticsSlovak Academy of SciencesBratislavaCzechoslovakia

Personalised recommendations