Automata and rational expressions on planar graphs

  • Francis Bossut
  • Max Dauchet
  • Bruno Warin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 324)


We study languages (i.e. sets) of planar directed acyclic graphs (pdags). These pdags are constructed by parallel composition and serial composition of letters and pdags on a doubly ranked alphabet. Our purpose is to introduce an algorithmic process (generalization of Kamimura and Slutzki's parallel automata) for accepting pdag languages and a specification of these languages by means of well-suited rational expressions. So our main result is a Kleene-like theorem proving the equivalence between rationality and automaton-definability.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ARNOLD, A. and DAUCHET, M. (1978), Théorie des Magmoides (I), RAIRO Informatique Théorique 12-3, 235–257.Google Scholar
  2. ARNOLD, A. and DAUCHET, M. (1979), Théorie des Magmoides (II), RAIRO Informatique Théorique 13-2, 135–154.Google Scholar
  3. BOSSUT, F. and WARIN. B. (1986), "Rationalité et reconnaissabilité dans des Graphes Acycliques", Doctorat, Université de Lille I.Google Scholar
  4. CLAUS, V., EHRIG, H., ROZENBERG, G. Ed. (1979), "Graph Grammars and their Applications to Computer Sciences and Biology", L.N.C.S. 73.Google Scholar
  5. COURCELLE, B. (1987), Recognizability and Second-Order Definability for Sets of Finite Graphs, Technical Report no I-8634, University of Bordeaux.Google Scholar
  6. COURCELLE, B. (1988), On recognizable sets and tree automata, To appear in Proceedings of the Colloquium on Resolution Equations in Algebraic Structures, AustinGoogle Scholar
  7. DEGANO, P. and MONTANARI, V. (1985), Specification Languages for Distribued Systems, TAPSOFT'85-L.N.C.S. 185, 29–51.Google Scholar
  8. EHRIG, H., PFENDER, M., SCHNEIDER, H, J., Ed. (1983), "Graph Grammars and their Applications to Computer Sciences", L.N.C.S. 153.Google Scholar
  9. EILENBERG, S. and WRIGHT, J.B. (1967), Automata and tree grammars, Inf. and Control 11, 217–231.Google Scholar
  10. ENGELFRIET, J. (1975), Bottom-up and Top-down tree transformations-a comparison, Math Syst Theory 9, 193–231.Google Scholar
  11. GRABOWSKY, J. (1981), On Partial Languages, Fund. Informaticae 4, 427–498.Google Scholar
  12. KAMIMURA, T. and SLUTZKI, G. (1981), Parallel and Two-way Automata on Directed Ordered Acyclic Graphs, Information and Control 49, 10–15.Google Scholar
  13. KAMIMURA, T. and SLUTZKI, G. (1982), Transductions of Dags and Trees, Math. SysT. Theory 15, 225–249.Google Scholar
  14. MARTELLI and MONTANARI, V. (1982), An Efficient Unification Algorithm, Transactions on Programming Languages and Syst., 256–282.Google Scholar
  15. OCHMANSKI, E. (1985), Regular Behaviour of Concurrent Systems, Bull. EATCS 27.Google Scholar
  16. THATCHER, J. W. (1973), Tree automata: Informal Survey, In Currents in the Theory of Computing (A.V, Aho, Ed.), Prentice-Hall, Englewood Cliffs, 143–172.Google Scholar
  17. WINKOWSKI, J. (1979), An Algebraic Approach to Concurrence, MFCS 79-L.N.C.S. 74, 523–532.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Francis Bossut
    • 1
  • Max Dauchet
    • 1
  • Bruno Warin
    • 1
  1. 1.U.A. 369 C.N.R.S. LIFLUniversité de Lille I, UFR d'IEEAVILLENEUVE D'ASCQ CedexFRANCE

Personalised recommendations