Functional programming and combinatory algebras

  • Corrado Böhm
Invited Lectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 324)


Functional programming algebraic programming combinatory algebras total recursive mappings on data structures combinators and λ-terms in normal form 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Abd 76]
    Abdali, S.K., An abstraction algorithm for combinatory logic, JSL 41, 1976Google Scholar
  2. [Bac 78]
    Backus, J., Can programming be liberated from von Neumann style? A functional style and its algebra of programs, ACM Comm., 1978, vol.21, no.8, pp.613–641Google Scholar
  3. [Bar 77]
    Barendregt, H.P., The type free lambda-calculus, in "Handbook of Mathematical Logic", Barwise (ed.), North Holland, 1981Google Scholar
  4. [Bar 81]
    Barendregt, H.P., The lambda calculus, North Holland, 1981Google Scholar
  5. [BB 85]
    Böhm, C. and Berarducci, A., Automatic synthesis of typed A-programs on term algebras, TCS 39 (1985), pp.135–154Google Scholar
  6. [BD 74]
    Böhm, C. and Dezani-Ciancaglini, M., Combinatorial problems, combinator equations and normal forms, in: Lœckx (ed.) Progr, "Automata,Languages and Programming 2thColloquium", LNCS 14, 1974, pp. 185–199Google Scholar
  7. [BD 75]
    Böhm, C. and Dezani-Ciancaglini, M., λ-terms as total or partial functions on normal forms, in "λ-Calculus and computer science theory", Böhm (ed.), LNCS 37, Springer, 1975, pp.96–121Google Scholar
  8. [Böh 82]
    Böhm, C., Combinatory foundation of functional programming, in "1982 ACM Symposium on Lisp and functional programming", 1982,Pittsburgh,Pen., pp. 29–36Google Scholar
  9. [Chu 41]
    Church, A., The calculi of lambda-conversion, Princeton Univ. Press, 1941Google Scholar
  10. [CD 77]
    Coppo, M. and Dezani-Ciancaglini, M., Tree and λ-terms in "Les Arbres an Algebre et Programmation" G.Jacobs (ed.), Debock, 1977, pp.91–120Google Scholar
  11. [Cop 85]
    Coppo, M., A completeness theorem for recursively defined types, in "Automata,Languages and Programming 12th colloquium", LNCS 194, 1985, pp.120–128Google Scholar
  12. [Joh 84]
    Johnsson, T., Efficient compilation of lazy evaluation, in "Proceedings of the SIGPLAN '84 symposium on compiler construction", Montreal, 1984, pp.58–69Google Scholar
  13. [McC 60]
    McCarthy, J., Recursive functions of symbolic expressions and their computation by machine, Comm.ACM 1960, vol.3, no. 4, pp184–195Google Scholar
  14. [Par 68]
    Parsons, C, Hierarchies of primitive recursive functions, Zeits.f.Math.Logik und Grundlage d.Math, vol.14, 1968, pp.357–376Google Scholar
  15. [Sch 24]
    Schönfinkel, M., Über die Bausteine der matematischen logik, Math. Annalen 92, 1924, pp.305–316Google Scholar
  16. [Tur 85]
    Turner, D.A., Miranda: A non strict language with polymorphic types, in "Proceedings 1985 conference on functional programming languages and computer architecture", Nancy, 1985, pp.1–16Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Corrado Böhm
    • 1
  1. 1.Dipartimento di Matematica Istituto "G. Castelnuovo"Università degli Studi di Roma "La Sapienza"Roma

Personalised recommendations