Advertisement

Learning by explanation of failures

  • Paulo Urbano
Part 4: Theorem Proving And EBL
Part of the Lecture Notes in Computer Science book series (LNCS, volume 482)

Abstract

The EBG learning technique has been mainly used in learning processes based on positive examples and successful experiences. However, several authors have demonstrated that failed proofs revealed to be quite useful as a form of avoiding future failures. The first attempts to learn from failure were based on the axiomatization of the problem-solver and on the creation of a specific meta-theory for all possible failures. Whenever there is a positive example of a failure, EBG is used to make operational the meta-theory.

Siqueira & Puget designed a new technique with a different philosophy to learn from counter-examples using only the domain theory. Their method finds a sufficient generalized condition from the failed proof of a goal. EBGF is still a fragile and incomplete technique as it doesn't cover all cases. The failure of a proof has specific characteristics which are not considered when we deal with positive proofs. In this paper we show the weaknesses of EBGF and we propose an improved technique to learn from failures in the presence of a counter-example. Our method is implemented in Prolog and its efficiency is currently under analysis.

Keywords

Explanation based learning failure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siqueira, J. CL. e Puget, J. F., Explanation-Based Generalization of Failures, Proceedings of the ECAI-88, pp 339–344, 1988.Google Scholar
  2. Mitchell T. M., Keller R. M., & Kedar-Kabelli S. T., Explanation-based Generalization: a unifying view, Machine Learning 1:1, pp 47–80, 1986.Google Scholar
  3. Minton, S. and Carbonell, J. G., Strategies for Learning Search Control Rules: An Explanation-based Approach. Proceedings of the 10th. IJCAI, Milan, pp 228–235, 1987.Google Scholar
  4. Gupta, A., Explanation-Based Failure Recovery, Proceedings AAAI-87, pp 606–610, 1987.Google Scholar
  5. Hirsh, H., Explanation-based generalization in a logic-programming environment. In Proceedings of the 10th. IJCAI, Milan, pp 221–227, 1987.Google Scholar
  6. Hirsh H., Reasoning about operationality for Explanation-based Learning. In Proceedings of the Fourth International Workshop on Machine Learning, pp 214–220, 1988.Google Scholar
  7. Kedar-Kabelli, S. T.& Mc Carty, CL. T., Explanation-Based Generalization as Resolution Theorem Proving, Proceedings of the Fourth International Workshop on Machine Learning, pp 383–389, 1987.Google Scholar
  8. Hammond, J. K., Explanation and Repairing Plans that Fail, Proceedings of the 10th. IJCAI, Milan, pp 109–114, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Paulo Urbano
    • 1
  1. 1.Laboratório de Informática e SistemasUniversidade de CoimbraCoimbraPortugal

Personalised recommendations