Description contrasting in incremental concept formation

  • Christine Decaestecker
Part 3: Numeric And Statistical Approaches
Part of the Lecture Notes in Computer Science book series (LNCS, volume 482)


This study evaluates the impact of concept descriptions on the behaviour and performance of concept formation processes (in which the data is either noisy or noise-free). Using a common architecture (ADECLU), different concept definitions are envisaged. These descriptions are of symbolic/numeric type, including statistical indices. The use of these indices introduces a "contrasting" between concept descriptions and reduces the effect of noise on predictive performance.


Concept Formation Incremental Conceptual Clustering Attribute selection Typical value 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderberg M.R. "Cluster analysis for applications", Academic Press, New York, 1973.Google Scholar
  2. Decaestecker C. "Formation incrémentale de concepts par un critère d'adéquation". Proceedings of "4èmes Journées Française d'Apprentissage", 1989 (a).Google Scholar
  3. Decaestecker C. "Incremental Concept Formation with Attribute Selection", Proceedings of the 4th EWSL (European Working Session on Learning), pp 49–58, 1989 (b).Google Scholar
  4. Decaestecker C. "Description Contrasting in ADECLU: ADECLU/S", Technical Report IA-01-90, CADEPS (CAIRU), Université Libre de Bruxelles, Belgium, 1990.Google Scholar
  5. Decaestecker C. Thesis, in preparation, Université Libre de Bruxelles, Belgium, 1991.Google Scholar
  6. Fisher D.H. "Knowledge acquisition via incremental conceptual clustering", Machine Learning, 2, pp 139–172, 1987.Google Scholar
  7. Fisher D.H. "Noise-Tolerant Conceptual Clustering", Proceedings of IJCAI-89, pp 825–830, 1989.Google Scholar
  8. Gennari J.H., Langley P. and Fisher D. "Models of Incremental Concept Formation", Artificial Intelligence, vol. 40, No 1–3, 1989.Google Scholar
  9. Gennari J.H. "Focused Concept Formation", Proceedings of the 6th International Workshop on Machine Learning, pp 379–382, 1989.Google Scholar
  10. Goodman L.A. and Kruskal W.H. "Measures of association for cross classifications", J. of the American Stat. Assoc., vol. 49, pp 732–764, 1954.Google Scholar
  11. Hanson S.J and Bauer M. "Machine Learning, Clustering and Polymorphy". In L.N. Kanal & J.F. Lemmer (Eds), Uncertainty in Artificial Intelligence, North-Holland, 1986.Google Scholar
  12. Lebbe J., Vignes R., Darmoni S. "Les objets symboliques qualifiés, Application au diagnostic médical", Proceedings of the "2èmes Journées Symbolique-Numérique", Report no 487, LRI, Université Paris-Sud (Orsay), 1988.Google Scholar
  13. Lebowitz M. "Experiments with incremental concept formation: UNIMEM", Machine Learning, 2, pp 103–138, 1987.Google Scholar
  14. Michalski R.S. and Chilausky R.L. "Learning by being told and learning from examples ...", Policy analysis and Information Systems, vol.4, No 2, June 1980.Google Scholar
  15. Quinlan J.R. "Induction of decision trees", Machine Learning, 1, pp 81–106, 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Christine Decaestecker
    • 1
  1. 1.CADEPS Artificial Intelligence Research UnitUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations