Solving simplification ordering constraints

  • Patricia Johann
  • Rolf Socher-Ambrosius
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 845)


This paper considers the decision problem for the existential fragment of the theory of simplification orderings. A simple, polynomialtime procedure is given for deciding satisfiability of ordering constraints by simplification orderings, and it is also shown that the corresponding problem for total simplification orderings is NP-complete. This latter result can be interpreted as showing that the problem of deciding whether or not a simplification ordering on first-order terms can be linearized is NP-complete.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BC93]
    A. Boudet and H. Comon. About the Theory of Tree Embedding. In Springer-Verlag LNCS 668, M.-C. Gaudel and J.-P. Jouannaud, eds., pp. 376–390, 1993.Google Scholar
  2. [Com90]
    H. Comon. Solving Inequations in Term Algebras. International Journal of Foundations of Computer Science 1, pp. 387–411, 1990.Google Scholar
  3. [CT94]
    H. Comon and R. Treinen. Ordering Constraints on Trees. In Springer-Verlag LNCS 787, S. Tison, ed., pp. 1–14, 1994.Google Scholar
  4. [Der87]
    N. Dershowitz. Termination of Rewriting. Journal of Symbolic Computation 3, pp. 69–116, 1987.Google Scholar
  5. [DJ90]
    N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In Handbook of Theoretical Computer Science B, J. van Leeuwen, ed., North-Holland, 1990.Google Scholar
  6. [GJ79]
    M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.Google Scholar
  7. [JO91]
    J.-P. Jouannaud and M. Okada. Satisfiability of Systems of Ordinal Notations with the Subterm Property is Decidable. In Springer-Verlag LNCS 510, J. L. Albert, B. Monien, and M. R. Artalejo, eds., pp. 455–468, 1991.Google Scholar
  8. [KKR90]
    C. Kirchner, H. Kirchner, and M. Rusinowitch. Deduction with Symbolic Constraints. Revue d'Intelligence Artificielle 4., pp. 9–52, 1990.Google Scholar
  9. [Nie93]
    R. Nieuwenhuis. Simple LPO Constraint Solving Methods. Information Processing Letters 47, pp. 65–69, 1993.Google Scholar
  10. [NR92]
    R. Nieuwenhuis and A. Rubio. Theorem Proving with Ordering Constrained Clauses. In Springer-Verlag LNCS 607, D. Kapur, ed., pp. 477–491, 1992.Google Scholar
  11. [Pla93]
    D. A. Plaisted. Polynomial Time Termination and Constraint Satisfaction Tests. In Springer-Verlag LNCS 690, C. Kirchner, ed., pp. 405–420, 1993.Google Scholar
  12. [Tre92]
    R. Treinen. A New Method for Undecidability Proofs for First-order Theories. Journal of Symbolic Computation 14, pp. 437–457, 1992.Google Scholar
  13. [Ven87]
    K. N. Venkataraman. Decidability of the Purely Existential Fragment of the Theory of Term Algebras. JACM 34, pp. 492–510, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  1. 1.Fachbereich InformatikUniversität SaarbrückenSaarbrückenGermany
  2. 2.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations