Skip to main content

Transient motion of a solitary wave in elastic ferroelectrics

  • Session II: Nonlinear waves — Solitons
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 249))

Abstract

A nonlinear transient wave motion involving the structure in domains and walls occuring in elastic ferroelectric crystals in the neighborhood of their phase transition is presented. Here the transient motion is caused by an applied electric field. Nonlinearly coupled equations governing the translational and rotational motions of the chain in the continuum approximation were obtained on the basis of a crystalline model consisting of an atomic chain equipped with microscopic electric dipoles. In the absence of applied field the equations obtained possess a solitary-wave solution which represents a moving ferroelectric 180° domain wall. Strains and stresses accompagny this solitary wave being generated through electromechanical couplings. When an electric field is present, a perturbation scheme is developed in order to obtain the characteristic parameters of the evolving wave. The method based on the averaged-Lagrangian of Whitham where the parameters depend only on time (adiabatic perturbation), allows one to deduce the velocity and position (or phase) of the ferroelectric solitary wave. By way of conclusion, numerical illustrations are given for the transient motion from rest of the electromechanical solitary wave.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. I.S. ZHELUDEV, Physics of crystalline Dielectrics (Plenum, New York, 1971).

    Google Scholar 

  2. V. JANOVEC, Ferroelectrics, 12, 43, (1976).

    Google Scholar 

  3. S. SUZUKI and M. TAKAGI, J. Phys. Soc. Jpn, 30, 188, (1971).

    Google Scholar 

  4. A.C. SCOTT, F.Y. CHU and D.W. McLAUGHLIN, Proc. IEEE, 61, 1443, (1973).

    Google Scholar 

  5. A.C. NEWELL, J. Applied Mech., 50, 1127, (1983).

    Google Scholar 

  6. R.K. DODD, J.C. EILGECK, J.D. GIBBON and H.C. MORRIS, Solitons and Nonlinear Wave Equations (Academic Press, London, 1982).

    Google Scholar 

  7. J. POUGET and G.A. MAUGIN, Phys. Rev., B30, 5306, (1984).

    Google Scholar 

  8. G.B. WHITHAM, Linear and Nonlinear Waves (J. Wiley-Interscience, New York, 1974).

    Google Scholar 

  9. V.L. BERDICHEVSKII, PMM U.S.S.R., 46, 244 (1982).

    Google Scholar 

  10. J.P. KEENER and D.W. McLAUGHLIN, Phys. Rev., A16, 777, (1977).

    Google Scholar 

  11. V.I. KARPMAN, Physics Scripta, 20, 462, (1979).

    Google Scholar 

  12. J. POUGET and G.A. MAUGIN, Phys. Rev., B31, 4633, (1985).

    Google Scholar 

  13. J. POUGET and G.A. MAUGIN, Phys. lett., 109A, 389, (1985).

    Google Scholar 

  14. G.A. MAUGIN and J. POUGET. Solitons in microstructured elastic media — Physical and Mechanical Aspects,in Continuum Models of Discrete Systems (5) Ed. A.J.M. Spencer, A.A. Balkema, Amsterdam (1985).

    Google Scholar 

  15. G.A. MAUGIN, Solitons and domain structure in elastic crystals with a microstructure, these proceedings.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ekkehart Kröner Klaus Kirchgässner

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag

About this paper

Cite this paper

Pouget, J. (1986). Transient motion of a solitary wave in elastic ferroelectrics. In: Kröner, E., Kirchgässner, K. (eds) Trends in Applications of Pure Mathematics to Mechanics. Lecture Notes in Physics, vol 249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0016389

Download citation

  • DOI: https://doi.org/10.1007/BFb0016389

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16467-8

  • Online ISBN: 978-3-540-39803-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics