The centers of context-sensitive languages

  • Ludwig Staiger
  • Werner Nehrlich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 233)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /AM/.
    Alt H. and K. Mehlhorn, A language over a one symbol alphabet requiring only O(log log n) space, SIGACT News, Vol. 7 (1975).Google Scholar
  2. /Ar/.
    Arnold A., Topological characterizations of infinite behaviours of transition systems, Proc. 10th ICALP, In: LNCS 154, Springer-Verlag, Berlin 1983, 28–38.Google Scholar
  3. /BN/.
    Boasson L. and M. Nivat, Centers of languages, in: Theoretical Computer Sci. (P. Deussen ed.), LNCS 104, Springer-Verlag, Berlin 1981, 245–251.Google Scholar
  4. /CG1/.
    Cohen R.S. and A.Y. Gold, ω-computations on Turing machines, Theoret. Comput. Sci. 6 (1978), 1–23.Google Scholar
  5. /CG2/.
    Cohen R.S. and A.Y. Gold, ω-computations on deterministic push down machines, J. Comput. System Sci. 16 (1978), 275–300.Google Scholar
  6. /Li/.
    Linna, M., On ω-sets associated with context-free languages, Inform. Control 31 (1976), 272–293.Google Scholar
  7. /Ni1/.
    Nivat M., On the synchronisation of processes, Sem. d. Informatique Theor. du LITP, Ann. 1978–79, Univ. Paris 7.Google Scholar
  8. /Ni2/.
    Nivat M., Sur les ensembles de mots infinis engendres par une grammaire algebrique, RAIRO Inf. Theor. 12 (1978), 259–278.Google Scholar
  9. /PU/.
    Prodinger M. and F. J. Urbanek, Language operators related to Init. Theoret. Comput. Sci. 8 (1979), 161–165.Google Scholar
  10. /Ro/.
    Rogers H., Theory of Recursive Functions and Effective Computability, McGraw Hill, New York 1967.Google Scholar
  11. /SHL/.
    Stearns R.E., Hartmanis J. and P. M. Lewis, Hierarchies of memory limited computations, IEEE Conf. Rec. Switching Circuit Theory and Logic. Design, New York 1965, 179–199.Google Scholar
  12. /St1/.
    Staiger L., Hierarchies of recursive ω-languages, EIK — J. Inform. Proc. and Cybernetics 22 (1986), 219–241.Google Scholar
  13. /ST2/.
    Staiger L., ω-computations on Turing machines and the accepted languages, in: Theory of Algorithms, L. Lovász and E. Szemerédi eds., Coll. Math. Soc. János Bólyai No. 44, Budapest 1986, 393–403.Google Scholar
  14. /SW/.
    Staiger L. and K. Wagner, Rekursive Folgenmengen I. Z.Math. Logik Grundlag. Math. 24 (1978), 523–538.Google Scholar
  15. /WW/.
    Wagner K. and G. Wechsung, Computational Complexity, Deutscher Verlag d. Wiss., Berlin 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Ludwig Staiger
    • 1
  • Werner Nehrlich
    • 2
  1. 1.Zentralinstitut für Kybernetik und InformationsprozesseAkademie der Wissenschaften der DDRBerlin
  2. 2.Karl-Weierstraß-Institut für MathematikAkademie der Wissenschaften der DDRBerlin

Personalised recommendations