Advertisement

The centers of context-sensitive languages

  • Ludwig Staiger
  • Werner Nehrlich
Communications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 233)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /AM/.
    Alt H. and K. Mehlhorn, A language over a one symbol alphabet requiring only O(log log n) space, SIGACT News, Vol. 7 (1975).Google Scholar
  2. /Ar/.
    Arnold A., Topological characterizations of infinite behaviours of transition systems, Proc. 10th ICALP, In: LNCS 154, Springer-Verlag, Berlin 1983, 28–38.Google Scholar
  3. /BN/.
    Boasson L. and M. Nivat, Centers of languages, in: Theoretical Computer Sci. (P. Deussen ed.), LNCS 104, Springer-Verlag, Berlin 1981, 245–251.Google Scholar
  4. /CG1/.
    Cohen R.S. and A.Y. Gold, ω-computations on Turing machines, Theoret. Comput. Sci. 6 (1978), 1–23.Google Scholar
  5. /CG2/.
    Cohen R.S. and A.Y. Gold, ω-computations on deterministic push down machines, J. Comput. System Sci. 16 (1978), 275–300.Google Scholar
  6. /Li/.
    Linna, M., On ω-sets associated with context-free languages, Inform. Control 31 (1976), 272–293.Google Scholar
  7. /Ni1/.
    Nivat M., On the synchronisation of processes, Sem. d. Informatique Theor. du LITP, Ann. 1978–79, Univ. Paris 7.Google Scholar
  8. /Ni2/.
    Nivat M., Sur les ensembles de mots infinis engendres par une grammaire algebrique, RAIRO Inf. Theor. 12 (1978), 259–278.Google Scholar
  9. /PU/.
    Prodinger M. and F. J. Urbanek, Language operators related to Init. Theoret. Comput. Sci. 8 (1979), 161–165.Google Scholar
  10. /Ro/.
    Rogers H., Theory of Recursive Functions and Effective Computability, McGraw Hill, New York 1967.Google Scholar
  11. /SHL/.
    Stearns R.E., Hartmanis J. and P. M. Lewis, Hierarchies of memory limited computations, IEEE Conf. Rec. Switching Circuit Theory and Logic. Design, New York 1965, 179–199.Google Scholar
  12. /St1/.
    Staiger L., Hierarchies of recursive ω-languages, EIK — J. Inform. Proc. and Cybernetics 22 (1986), 219–241.Google Scholar
  13. /ST2/.
    Staiger L., ω-computations on Turing machines and the accepted languages, in: Theory of Algorithms, L. Lovász and E. Szemerédi eds., Coll. Math. Soc. János Bólyai No. 44, Budapest 1986, 393–403.Google Scholar
  14. /SW/.
    Staiger L. and K. Wagner, Rekursive Folgenmengen I. Z.Math. Logik Grundlag. Math. 24 (1978), 523–538.Google Scholar
  15. /WW/.
    Wagner K. and G. Wechsung, Computational Complexity, Deutscher Verlag d. Wiss., Berlin 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Ludwig Staiger
    • 1
  • Werner Nehrlich
    • 2
  1. 1.Zentralinstitut für Kybernetik und InformationsprozesseAkademie der Wissenschaften der DDRBerlin
  2. 2.Karl-Weierstraß-Institut für MathematikAkademie der Wissenschaften der DDRBerlin

Personalised recommendations