One-sided Dyck reduction over two letter alphabet and deterministic context-free languages

  • Fabienne Romian
  • Jacques Sakarovitch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 233)


We characterize the deterministic context-free languages that are unions of equivalence classes in the equivalence generated by the one-sided Dyck reduction over a two-letter alphabet.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. [1]
    M. Benois: Parties rationnelles du groupe libre C.R. Acad. Sc. Paris, Ser. A 269, 1969, 1188–1190.Google Scholar
  2. [2]
    R. Book, M. Jantzen, and C. Wrathall: Monadic Thue Systems, Theoret. Comput. Sci 19, 1982, 231–251.Google Scholar
  3. [3]
    A. H. Clifford, and G. B. Preston: The algebraic theory of semigroups, Amer. Math. Soc, Vol 1: 1961, Vol 2: 1967.Google Scholar
  4. [4]
    Y. Cochet et M. Nivat: Une généralisation des ensembles de Dyck, Israel J. of Math. 9, 1971, 389–395.Google Scholar
  5. [5]
    G. Duchamp: Etude d'un treillis, relations d'équivalence régulières sur le monoïde bicyclique, to appear.Google Scholar
  6. [6]
    S. Ginsburg and S. Greibach: Deterministic context-free languages, Inform. and Control 9, 1966, 620–648.Google Scholar
  7. [7]
    M. Harrison: Introduction to formal language theory, Addison Wesley, 1978.Google Scholar
  8. [8]
    M. Jantzen: Thue systems and the Church-Rosser property, M.F.C.S. 1984, Lecture Notes in Computer Science 176, Springer, 1984, 80–95.Google Scholar
  9. [9]
    M. Nivat: On some families of languages related to the Dyck lnaguage, in Proc. of the Second Annual ACM Symp. on Computing, 1970, 221–225.Google Scholar
  10. [10]
    J.F. Perrot: Monoïdes syntactiques des langages algébriques, Acta Informatica 7, 1977, 399–413.Google Scholar
  11. [11]
    J.F. Perrot et J. Sakarovitch: Lanages algébriques déterministes et groupes abéliens, in Automata Theory and Formal Languages (H. Brakhage, ed.), Lecture Notes in Computer Science 33, Springer, 1975, 20–30.Google Scholar
  12. [12]
    J. Sakarovitch: Syntaxe des langages de Chomsky. Th. Sc. Math., Univ. Paris VII, Paris, 1979.Google Scholar
  13. [13]
    J. Sakarovitch: Théorème de transversale rationnelle pour les automates à pile déterministes, in Proc. of 4th G.I. Conference on Theorical Computer Science (K. Weihrauch ed.), Lecture Notes in Computer Science 67, Springer, 1979, 276–285.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Fabienne Romian
    • 1
  • Jacques Sakarovitch
    • 1
  1. 1.Laboratoire d'Informatique Théorique et Programmation. C.N.R.S.Université Paris VIParis Cedex 05

Personalised recommendations