Two characterizations of the logarithmic alternation hierarchy

  • Klaus-Jörn Lange
Part of the Lecture Notes in Computer Science book series (LNCS, volume 233)


Two characterizations of the logarithmic alternation hierarchy are given. The first one by bounded quantification of DSPACE(log n)-predicates, where the quantified words are given as one-way input. It is shown that a simple change of the order of the quantified words (w.r.t. the order of the quantifiers) allows the generation of NP-complete sets. The second characterization is by nondeterministic many-one log-space reductions, which fulfill the Ruzzo, Simon, and Tompa - condition.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [CKS]
    A. Chandra, D. Kozen, L. Stockmeyer: Alternation, J. Assoc. Comput. Mach. 28 (1981), 114–133.Google Scholar
  2. [FS]
    P. Flajolet, J. Steyaert: Complexity of classes of languages and operators, IRIA Laboria, Rap. de Recherche No. 92, Nov. 1974.Google Scholar
  3. [HU]
    J. Hopcroft, J. Ullman: Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading Mass., 1979.Google Scholar
  4. [LL]
    R. Ladner, N. Lynch: Relativization of questions about log space computability, Math. Systems Theory 10 (1976), 19–32.Google Scholar
  5. [LLS]
    R. Ladner, N. Lynch, A. Selman: A comparison of polynomial time reducibilities, Theoret. Comput. Sci. 1 (1975), 103–123.Google Scholar
  6. [Ln 85 a]
    K.-J. Lange: Nichtdeterministische Reduktionen und Logarithmische Hierarchien, Habilitationsschrift, University of Hamburg, 1985, (in German).Google Scholar
  7. [Ln 85 b]
    K.-J. Lange: Decomposition of nondeterministic reductions, to be published in the proceedings of ICALP 1986.Google Scholar
  8. [Ly]
    N. Lynch: Log space recognition and translation of parenthesis languages, J. Assoc. Compu. Mach. 24 (1977), 583–590.Google Scholar
  9. [MS]
    A. Meyer, L. Stockmeyer: The equivalence problem for regular expressions with squaring requires exponential space, Proc. of the 13th IEEE Symp. on Swi. and Aut. Theory 1972, 125–129.Google Scholar
  10. [RoY]
    L. Rosier, H.-C. Yen: Logspace hierarchies, polynomial time and the complexity of fairness problems concerning ω-machines, Proc. of STACS 1986, Springer LNCS 210, 306–320.Google Scholar
  11. [RST]
    W. Ruzzo, J. Simon, M. Tompa: Space-bounded hierarchies and probabilistic computations, J. Comput. System Sci. 28 (1984), 216–230.Google Scholar
  12. [S]
    L. Stockmeyer: The polynomial-time hierarchy, Theoret. Comput. Sci. 3 (1976), 1–22.Google Scholar
  13. [SM]
    L. Stockmeyer, A. Meyer: Word problems requiring exponential time: preliminary report, Proc. of the 5th ACM Symp. on Theory of Comp., 1973, 1–9.Google Scholar
  14. [W]
    C. Wrathall: Complete sets and the polynomial hierarchy, Theoret. Comput. Sci. 3 (1976), 23–33.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Klaus-Jörn Lange
    • 1
  1. 1.Fachbereich Informatik der Universität HamburgHamburg 13

Personalised recommendations