Some improved parallelisms for graphs

  • A. Goralčíková
  • V. Koubek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 233)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AHU]
    A. V. Aho, J. E. Hopcroft, J. D. Ullman, The design and analysis of computer algorithms, Addison-Wesley 1974.Google Scholar
  2. [ADKF]
    V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, I. A. Faradzev, Ob ekonomnom postrojenii tranzitivnogo zamykanija grafa (Russian), Dokl. AN SSSR 194(1970), 487–488.Google Scholar
  3. [CLC]
    F. Y. Chin, I. Lam, I. Chen, Optimal parallel algorithms for the connected component problems, Proc. Int. Conf. on Parallel Processing (1981), 170–175.Google Scholar
  4. [JJS]
    J. Ja'Ja', J. Simon, Parallel algorithms in graph theory: planarity testing, SIAM J. Comp. 11(1982), 314–328.Google Scholar
  5. [JK]
    L. Janiga, V. Koubek, A note on finding minimum cuts in directed planar networks by parallel computation, Inf. Proc. Letters 21(1985), 75–78.Google Scholar
  6. [KKl]
    V. Koubek, J. Kršňáková, Parallel algorithms for connected components in a graph, Proc. of FCT, Lecture Notes in Comp. Sci. 199(1985), 208–217.Google Scholar
  7. [KK2]
    V. Koubek, J. Kršňáková, Nearly optimal algorithms for connected components in a graph, to appear.Google Scholar
  8. [K]
    L. Kučera, Parallel computation and conflicts in memory access, Inf. Proc. Letters 14(1982), 93–96.Google Scholar
  9. [ML1]
    S. MacLane, A combinatorial condition for planar graphs, Fund. Math. 28(1937), 22–32.Google Scholar
  10. [ML2]
    S. MacLane, A structural characterization of planar combinatorial graphs, Duke Math. J. 3(1937), 460–472.Google Scholar
  11. [TV]
    R. E. Tarjan, U. Vishkin, Finding biconnected components and computing tree functions in logarithmic parallel time, Proc. of 25th Symp. on FOCS, 1984, 14–20.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • A. Goralčíková
    • 1
  • V. Koubek
    • 1
  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPraha 1Czechoslovakia

Personalised recommendations