Projections of CE-systems

  • Hartmann J. Genrich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 222)


A simple formalism for omitting details of CE-systems called projection is presented. Projections work with the PrT-net representation of CE-systems and allow to look at a CE-system from a partially quantitative point of view. They provide an unified approach to ordinary PT-nets and to PrT-nets avoiding multisets in the beginning. Their main use is for eliminating individual variables that occur in the coefficients of S-invariants of PrT-nets.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Genrich, H.J.; Lautenbach, K.: Synchronisationsgraphen. Acta Informatica 2 (1973) 143–161 (in German)CrossRefGoogle Scholar
  2. [2]
    Genrich, H.J.; Lautenbach, K.: The Analysis of Distributed Systems by means of Predicate/Transition-Nets. In: Semantics of Concurrent Computation (G. Kahn, Ed.), LNCS 70, Springer-Verlag (1979) 123–146Google Scholar
  3. [3]
    Genrich, H.J.; Lautenbach, K.: System Modelling with High-Level Petri Nets. TCS 13 (1981) 109–136CrossRefGoogle Scholar
  4. [4]
    Devillers, R.: The Semantics of Capacities in P/T Nets: A First Look. In: Proceedings of the 6th European Workshop on Applications and Theory of Petri Nets. Helsinki University of Technology, Espoo (Finland) 1985Google Scholar
  5. [5]
    Durchholz, R.: A Note on Multiplicity. Newsletter SIG Petri Nets and Related System Models vol. 21, Gesellschaft für Informatik (June 1985)Google Scholar
  6. [6]
    Genrich, H.J.; Stankiewicz-Wiechno, E.: A Dictionary of Some Basic Notions of Net Theory. In: Net Theory and Applications (W. Brauer, Ed.) LNCS 84, Springer-Verlag (1980) 519–537Google Scholar
  7. [7]
    Gerhards, B.: S-Invarianten in Prädikat/Transitionsnetzen. Diplomarbeit, Universität Bonn (1982) (in German)Google Scholar
  8. [8]
    Halmos, P.R.: Naive Set Theory. Springer-Verlag (1974)Google Scholar
  9. [9]
    Holt, A.W.; Commoner, F.; Even, S.; Pnueli, A.: Marked Directed Graphs. J. Comp. Sys. Sc. 5 (1971) 511–523Google Scholar
  10. [10]
    Jensen, K.: Coloured Petri Nets and the Invariant Method. TCS 14 (1981) 317–336CrossRefGoogle Scholar
  11. [11]
    Reisig, W.: Petri Nets. Springer-Verlag (1985)Google Scholar
  12. [12]
    Smullyan, R.M.: First-Order Logic. Springer-Verlag (1968)Google Scholar
  13. [13]
    Thiagarajan, P.S.: Some Aspects of Net Theory. Arbeitspapiere der GMD Nr. 55, Gesellschaft für Mathematik und Datenverarbeitung (1983)Google Scholar
  14. [14]
    Vautherin, J.; Memmi, G.: Computation of Flows for Unary-Predicate/Transition-Nets. In: Proceedings of the 5th European Workshop on Applications and Theory of Petri Nets. Aarhus University, Aarhus (Denmark) 1984Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Hartmann J. Genrich
    • 1
  1. 1.Institut für Methodische Grundlagen Gesellschaft für Mathematik und DatenverarbeitungSt. Augustin 1Fed. Rep. Germany

Personalised recommendations