Petri nets and algebraic calculi of processes

  • Gérard Boudol
  • Gérard Roucairol
  • Robert de Simone
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 222)


We show that, as transition systems, Petri nets may be expressed by terms of a calculus of processes which is a variant of Milner's SCCS. We then prove that the class of labelled nets forms a subcalculus, thus an algebra, with juxtaposition, adding condition and labelling as primitive operations. Finally we introduce rational machines which express explicit synchronizations on nets.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. André, P. Armand & F. Boeri: "Synchronic relations and applications in parallel computations", Digital Process 5 (1979), 99–113Google Scholar
  2. [2]
    D. Austry, G. Boudol: "Algèbre de processus et synchronisation", Theoret. Comput. Sci. 30 (1984)Google Scholar
  3. [3]
    G. Boudol: "Notes on algebraic calculi of process", Logics and Models of Concurrent Systems (K. Apt, Ed.), NATO ASI Series, Vol. F13 (Springer, Berlin, 1985) 261–303 (also INRIA Res. Rep. 395)Google Scholar
  4. [4]
    W. Brauer (editor): "Advanced course on general net theory of processes and systems", Hamburg 1979. Lecture Notes in Comput. Sci. 84 (Springer, Berlin, 1980)Google Scholar
  5. [5]
    G.W. Brams: "Réseaux de Petri: théorie et pratique", (Masson, Paris, 1983)Google Scholar
  6. [6]
    R.H. Campbell, P.E. Lauer: "Formal semantics for a class of high-level primitives for coordinating concurrent processes". Acta Informatica 5 (1975), 247–332Google Scholar
  7. [7]
    S. Eilenberg & M.P. Schutzenberger: "Rational sets in Commutative monoids", Journal of Algebra 13 (1969), 173–191CrossRefGoogle Scholar
  8. [8]
    S. Eilenberg: "Automata, Languages and Machines" Vol.A, Academic Press (1974)Google Scholar
  9. [9]
    U. Goltz, A. Mycroft: "On the relationship of CCS and Petri Nets", ICALP 84, Lecture Notes in Comput. Sci. 172 (Springer, Berlin, 1984), 196–208Google Scholar
  10. [10]
    V.E. Kotov: "An algebra for parallelism based on Petri nets", MFCS 79, Lecture Notes in Comput. Sci. 64 (Springer, Berlin, 1979), 39–55Google Scholar
  11. [11]
    R. Milner: "Flowgraphs and flow algebras", JACM 26 (1979), 794–818CrossRefGoogle Scholar
  12. [12]
    R. Milner: "A calculus of communicating systems", Lecture Notes in Comput. Sci., 92 (Springer, Berlin, 1980)Google Scholar
  13. [13]
    R. Milner: "On relating synchrony and asynchrony", Tech. Rept. CSR-75-80, Comput. Sci. Dept., Edinburgh Univ. 1980Google Scholar
  14. [14]
    R. Milner: "Calculi for synchrony and asynchrony", Theoret. Comput. Sci. 25 (1983), 267–310CrossRefGoogle Scholar
  15. [15]
    J.L. Peterson: "Petri nets", Comput. Surveys 9 (1977), 223–252CrossRefGoogle Scholar
  16. [16]
    J.L. Peterson: "Petri net theory and the modeling of systems". Prentice Hall (1981)Google Scholar
  17. [17]
    G. Rozenberg, R. Verraedt: "Subset languages of Petri nets", Part I, Theoret. Comput. Sci. 26 (1983), 301–326CrossRefGoogle Scholar
  18. [18]
    R. de Simone: "Higher-Level synchronizing devices in Meije-SCCS", INRIA Res. Rep. no 360 (1985). To appear in TCS 40Google Scholar
  19. [19]
    G. Winskel: "Categories of models for concurrency", Seminar on Concurrency, Lecture Notes in Comput. Sci. 197 (Springer, Berlin, 1985) 246–267Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Gérard Boudol
    • 1
  • Gérard Roucairol
    • 2
  • Robert de Simone
    • 1
  1. 1.INRIA, Sophia AntipolisValbonneFrance
  2. 2.BULL, Centre de recherchesLouveciennesFrance

Personalised recommendations