Advertisement

A remark on some classifications of Indian parallel languages

  • Bernd Reichel
Chapter 1 Languages
Part of the Lecture Notes in Computer Science book series (LNCS, volume 381)

Abstract

We discuss the descriptional complexity measures number of nonterminals, number of productions, and number of symbols of Indian parallel grammars and Indian parallel languages.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Ginsburg, The Mathematical Theory of Context-Free Languages (McGraw-Hill, New York, 1966).Google Scholar
  2. [2]
    J. Gruska, On a classifikation of context-free languages, Kybernetika 3 (1967) 22–29.Google Scholar
  3. [3]
    J. Gruska, Some classifications of context-free languages, Information and Control 14 (1969) 152–179.Google Scholar
  4. [4]
    J. Gruska, Complexity and unambiguity of context-free grammars and languages, Information and Control 18 (1971) 502–512.Google Scholar
  5. [5]
    J. Gruska, On the size of context-free grammars, Kybernetika 8 (1972) 213–218.Google Scholar
  6. [6]
    J. Gruska, Descriptional complexity of context-free languages, in: Proc. MFCS'73 High Tatras (1973) 71–83.Google Scholar
  7. [7]
    M.A. Harrison, Introduction to Formal Language Theory (Addison-Wesley P.C., Reading Massachusetts, 1978)Google Scholar
  8. [8]
    B. Reichel, Some classifications of Indian parallel languages, submitted for publication.Google Scholar
  9. [9]
    R. Siromoney and K. Krithivasan, Parallel context-free languages, Information and Control 24 (1974) 155–162.Google Scholar
  10. [10]
    S. Skyum, Parallel context-free languages, Information and Control 26 (1974) 280–285.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Bernd Reichel
    • 1
  1. 1.Department of MathematicsTechnological UniversityMagdeburgGerman Democratic Republic

Personalised recommendations