Dynamic interpolation search

  • Kurt Mehlhorn
  • Athanasios Tsakalidis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 194)


We present a new data structure called Interpolation Search tree (IST) which supports interpolation search and insertions and deletions. Amortized insertion and deletion cost is O(log n). The expected search time in a random file is O(log log n). This is not only true for the uniform distribution but for a wide class of probability distributions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Frederickson: “Implicit Data Structures for the Dictionary problem“ Journal of ACM Vol. 30 No. 1, 80–94 (1983)CrossRefGoogle Scholar
  2. [2]
    G. Gonnet, L. Rogers, J. George: “An Algorithmic and Complexity Analysis of Interpolation Search“ Acta Informatica 13(1), 39–52 (1980)CrossRefGoogle Scholar
  3. [3]
    A. Itai, A.G. Konheim, M. Rodeh: “A Sparse Table Implementation of Priority Queues“ Proc. ICALP 81, LNCS 115, 417–431 (1981)Google Scholar
  4. [4]
    D. E. Knuth: “Deletions that preserve Randomness“ IEEE Trans.Software Engrg. SE 3, 351–359Google Scholar
  5. [5]
    K. Mehlhorn: “Data Structures and Algorithms“ Vol. 1, Sorting and Searching, Springer Verlag, EATCS Monographs in Theoretical Computer Science 1980Google Scholar
  6. [6]
    K. Mehlhorn and A. Tsakalidis: “Dynamic Interpolation Search“ Technischer Bericht A84/05 FB 10 Universität des Saarlandes, 1984, submitted to Journal of ACM.Google Scholar
  7. [7]
    Y. Pearl, A. Itai, H. Avni: “Interpolation Search-A Log Log N Search“ Communications of ACM, 21(7), 550–554 (1978)CrossRefGoogle Scholar
  8. [8]
    Y Pearl and E. M. Reingold: “Understanding the Complexity of Interpolation Search“ Inform Proc. Letters 6(6), 219–222 (1977)CrossRefGoogle Scholar
  9. [9]
    W.W. Peterson: “Addressing for Random Storage“ IBM J. Res. and Develop. 1, 131–132 (1957)Google Scholar
  10. [10]
    D.E. Willard: “Searching Nonuniformly Generated Files in a Log Log N Runtime“ SIAM Journal of Computing, in pressGoogle Scholar
  11. [11]
    A.C. Yao and F.F. Yao: “The Complexity of Searching an Ordered Random Table“ Proc. 17th Annual Symp. Foundations of Computer Science 173–177 (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Kurt Mehlhorn
    • 1
  • Athanasios Tsakalidis
    • 1
  1. 1.Fachbereich 10, Angewandte Mathematik und Informatik Universität des SaarlandesSaarbrückenWest Germany

Personalised recommendations