ICALP 1985: Automata, Languages and Programming pp 338-347

# On k-repetition free words generated by length uniform morphisms over a binary alphabet

• Veikko Keränen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 194)

## Abstract

Let an integer k ≧ 3 be fixed. A word is called k-repetition free, or shortly k-free, if it does not contain a subword of the form pk ≠ λ. Let a morphism h: {a,b}* → γ* be length uniform (meaning that |h(a)|=|h(b)|) and h(a) ≠ h(b). Assume that pn, k ≦ n ε ℕ, is a subword of h(w), where w in {a,b}* is k-free. In this case we give an optimal upper bound for the length of pn. Moreover, we give outlines for the proof of the following result: when deciding whether a given morphism h, of the form mentioned above, is k-free, one has only to examine (in an easy way) the words h(wo), where the length of wo is ≦ 4 (or, in some special cases, even less). Finally, we characterize sharply k-free DOL and NDOL sequences obtained by using length uniform binary morphisms. For example, in the case k=3 we have the following result: if a length uniform binary endomorphism generates a cube in a DOL sequence, then it does so in three steps.

## References

1. [1]
D.R. Bean, A. Ehrenfeucht and G.F. McNulty, Avoidable patterns in strings of symbols, Pacific J. Math. 85 (1979) 261–294.Google Scholar
2. [2]
J. Berstel, Sur les mots sans carré définis par une morphisme, Springer Lecture Notes in Computer Science 71 (1979) 16–25.Google Scholar
3. [3]
J. Berstel, Mots sans carré et morphismes iteres, Discrete Math. 29 (1979) 235–244.
4. [4]
J. Berstel, Some recent results on squarefree words, Proc. STACS 84, Springer Lecture Notes in Computer Science (1984) 14–25.Google Scholar
5. [5]
F.J. Brandenburg, Uniformly growing k-th power-free homomorphisms, Theoret. Comput. Sci. 23 (1983) 69–82.
6. [6]
A. Carpi, On the size of a square-free morphism on a three letter alphabet, Inf. Proc. Letters 16 (1983) 231–236.
7. [7]
A. Carpi, On the centers of the set of weakly square-free words on a two letter alphabet, Inf. Proc. Letters 19 (1984) 187–190.
8. [8]
A. Cerny, On generalized words of Thue-Morse, Techn. Report, Univ. Paris VII, L.I.T.P. 83–84 (1983).Google Scholar
9. [9]
M. Crochemore, Sharp characterizations of squarefree morphisms, Theoret. Comput. Sci. 18 (1982) 221–226.
10. [10]
M. Crochemore, Regularites evitables (Ph.D. Thesis, Univ. Rouen), Univ. Paris VII, L.I.T.P. 83–43 (1983).Google Scholar
11. [11]
F. Dejean, Sur un théorème de Thue, J. Combin. Theory Ser. A, 13 (1972) 90–99.
12. [12]
F. Dekking, On repetitions of blocks in binary sequences, J. Combin. Theory, Ser. A, 20 (1976) 292–299.
13. [13]
A. Ehrenfeucht and G. Rozenberg, Repetitions in homomorphisms and languages, Springer Lecture Notes in Computer Science 140 (1982) 192–196.Google Scholar
14. [14]
A. Ehrenfeucht and G. Rozenberg, Repetitions of subwords in DOL languages, Inform. and Control 59 (1983) 13–35.
15. [15]
A. Ehrenfeucht and G. Rozenberg, On regularity of languages generated by copying systems, Discrete Appl. Math. 8 (1984) 313–317.
16. [16]
E.D. Fife, Binary sequences which contain no BBb, Trans. Amer. Math. Soc. 261 (1980) 115–136.Google Scholar
17. [17]
T. Harju, Morphisms that avoid overlapping, Univ. Turku (1983).Google Scholar
18. [18]
T. Harju and M. Linna, The equations h(w)=wn in binary alphabets, Theoret. Comput. Sci. 33 (1984) 327–329.
19. [19]
J. Karhumäki, On strongly cube-free ω-words generated by binary morphisms, Springer Lecture Notes in Computer Science 117 (1981) 182–189.Google Scholar
20. [20]
J. Karhumäki, On cube-free ω-words generated by binary morphisms, Discrete Appl. Math. 5 (1983) 279–297.
21. [21]
V. Keränen, On k-repetition free words generated by length uniform morphisms over a binary alphabet, Preprint, Dep. Math., Univ. Oulu (1984).Google Scholar
22. [22]
M. Leconte, A fine characterization of power-free morphisms, To appear in Theoret. Comput. Sci. (1985).Google Scholar
23. [23]
M. Linna, On periodic ω-sequences obtained by iterating morphisms, Ann. Univ. Turkuensis, Ser. A I 186 (1984) 64–71.Google Scholar
24. [24]
25. [25]
A. de Luca, On the product of square-free words, Discrete Math. 52 (1984) 143–157.
26. [26]
M. Morse, Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc. 22 (1921) 84–100.
27. [27]
J.-J. Pansiot, The Morse sequence and iterated morphisms, Inf. Proc. Letters 12 (1981) 68–70.
28. [28]
J.-J. Pansiot, A propos d'une conjecture de F. Dejean sur les répétitions dans les mots, Discrete Appl. Math. 7 (1984) 297–311.
29. [29]
P.A. Pleasants, Non-repetitive sequences, Proc. Cambridge Phil. Soc. 68 (1970) 267–274.Google Scholar
30. [30]
G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems (Academic Press, London, 1980).Google Scholar
31. [31]
A. Salomaa, Jewels of Formal Language Theory (Computer Science Press, Rockville, Maryland, 1981).Google Scholar
32. [32]
P. Séébold, Sequences generated by infinitely iterated morphisms, To appear in Discrete Appl. Math. (1985).Google Scholar
33. [33]
R. Shelton, Aperiodic words on three symbols I, II, J. reine angew. Math. 321 (1981) 195–209, 327 (1981) 1–11.Google Scholar
34. [34]
R. Shelton and R. Soni, Aperiodic words on three symbols III, J. reine angew. Math. 330 (1981) 44–52.Google Scholar
35. [35]
A. Thue, Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr., I. Mat. Nat. Kl., Christiania, 7 (1906) 1–22.Google Scholar
36. [36]
A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske Vid. Selsk. Skr., I. Mat. Nat. Kl., Christiania, 1 (1912) 1–67.Google Scholar