Advertisement

Ambiguity and transcendence

  • Philippe Flajolet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 194)

Abstract

We establish that several classical context free languages are inherently ambiguous by proving that their counting generating functions, when considered as analytic functions, exhibit some characteristic form of transcendental behaviour.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J-M. Autebert, J. Beauquier, L. Boasson, and M. Nivat, “Quelques Problemes Ouverts en Theorie des Langages Alge'briques,” R.A.I.R.O. Theoret. Comp. Sc. 13 pp. 363–379 (1979).Google Scholar
  2. 2.
    J. Beauquier and L. Thimonier, Formal Languages and Bernoulli Processes, (to appear) 1983.Google Scholar
  3. 3.
    M. Ben-Or, “Lower Bounds for Algebraic Computation Trees,” Proc. 15th ACM Symp. on Theory of Computing, pp. 80–86 (1983).Google Scholar
  4. 4.
    J. Berstel, “Sur la densite' asymptotique des langages formels,” Proc. 1st ICALP Colloquium, pp. 345–368 North Holland, (1972).Google Scholar
  5. 5.
    N. Chomsky and M-P. Schutzenberger, “The Algebraic Theory of Context-Free Languages,” Computer Programming and Formal Systems, pp. 118–161 North Holland, (1963).Google Scholar
  6. 6.
    L. Comtet, “Calcul pratique des coefficients de Taylor d'une fonction alge'brique,” Enseignement Math. 10 pp. 267–270 (1964).Google Scholar
  7. 7.
    J.P. Crestin, “Un langage non ambigu dont le carre' est d'ambiguite' inherente borne'e,” Proc. 1st ICALP Colloquium, pp. 377–390 North Holland, (1972).Google Scholar
  8. 8.
    W. Feller, An Introduction to Probability Theory and its Applications, J. Wiley, New-York (1950).Google Scholar
  9. 9.
    G. H. Hardy, Ramanujan, Twelve Lectures Suggested by his Life and Work, Cambridge, The University Press (1940).Google Scholar
  10. 10.
    M. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, Mass. (1978).Google Scholar
  11. 11.
    R. Kemp, “On the Number of Words in the Language {ω∈Σ}2,” Discrete Math. 40 pp. 225–234 (1980).CrossRefGoogle Scholar
  12. 12.
    R. Kemp, “A Note on the density of Inherently Ambiguous Context-Free Languages,” Acta Informatica 14 pp. 295–298 (1980).Google Scholar
  13. 13.
    N. Pippenger, “Computational Complexity in Algebraic Function Fields,” Proc. 20th IEEE Symp. F.O.C.S., pp. 61–65 (1979).Google Scholar
  14. 14.
    A. Salomaa and M. Soittola, Automata Theoretic Aspects of Formal Power Series, Springer-Verlag, New-York (1978).Google Scholar
  15. 15.
    Th. Schneider, Einfuhrung in die Transzendenten Zahlen, Springer Verlag, Berlin (1957).Google Scholar
  16. 16.
    A. Seidenberg, Elements of the Theory of Algebraic Curves, Addison-Wesley, Reading, Mass. (1965).Google Scholar
  17. 17.
    E. Shamir, “Some Inherently Ambiguous Context-Free Languages,” Inf. and Control 18 pp. 355–363 (1971).CrossRefGoogle Scholar
  18. 18.
    M. I. Shamos and G. Yuval, “Lower Bounds from Complex Function Theory,” Proc. 17th IEEE Symp. F.O.C.S., pp. 268–273 (1976).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Philippe Flajolet
    • 1
  1. 1.Inria RocquencourtLe ChesnayFrance

Personalised recommendations