Characterization of high level tree transducers

  • Joost Engelfriet
  • Heiko Vogler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 194)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AU1]
    A.V. Aho, J.D. Ullman; Translations on a context-free grammar; Inf. and Contr. 19 (1971), 439–475.CrossRefGoogle Scholar
  2. [AU2]
    A.V. Aho, J.D. Ullman; “The Theory of Parsing, Translation, and Compiling“ Vol. 1,2, Prentice Hall, Englewood Cliffs, N.J. 1973.Google Scholar
  3. [CM]
    L.M. Chirica, D.E. Martin; An order algebraic definition of Knuthian semantics; Math. Syst. Theory 13 (1979), 1–27.CrossRefGoogle Scholar
  4. [CF]
    B. Courcelle, P. Franchi-Zannettacci; Attribute grammars and recursive program schemes I, II; TCS 17 (1982), 163–191 and TCS 17 (1982), 235–257.CrossRefGoogle Scholar
  5. [Da]
    W. Damm; The IO-and OI-hierarchies; TCS 20 (1982), 95–206.CrossRefGoogle Scholar
  6. [DGo]
    W. Damm, A. Goerdt; An automata-theoretic characterization of the OI-hierarchy; Proc. 9th ICALP; 1982, Aarhus, pp. 141–153; to appear in Inf. and Control.Google Scholar
  7. [DG1]
    W. Damm, I. Guessarian; Combining T and level n; Proc. of the 9th Mathematical Foundations of Computer Sciences 1981, LNCS 118, p.262–270, Springer-Verlag.Google Scholar
  8. [DG2]
    W. Damm, I. Guessarian; Implementation techniques for recursive tree transducers on higher-order data types; Report 83-16, Laboratoire Informatique Theorique et Programmation, Université Paris 7, 1983.Google Scholar
  9. [E1]
    J. Engelfriet; Bottom-up and top-down tree transformations — a comparison; Math. Syst. Theory 9 (1975), 198–231.CrossRefGoogle Scholar
  10. [E2]
    J. Engelfriet; Some open questions and recent results on tree transducers and tree languages; in: “Formal language theory; perspectives and open problems”, (R.V. Book, Ed.), New York, Academic Press, 1980.Google Scholar
  11. [E3]
    J. Engelfriet; Tree transducers and syntax-directed semantics; TW-Memorandum Nr. 363 (1981), Twente University of Technology; also: Proc. 7th CAAP, March 1982, Lille, pp. 82–107.Google Scholar
  12. [E4]
    J. Engelfriet; Recursive automata; (1982) unpublished notes.Google Scholar
  13. [E5]
    J. Engelfriet; Iterated pushdown automata and complexity classes; Proc. 15th STOC, April 1983, Boston, pp. 365–373.Google Scholar
  14. [EF]
    J. Engelfriet, G. File; The formal power of one-visit attribute grammars; Acta Informatica 16 (1981), 275–302.CrossRefGoogle Scholar
  15. [ES]
    J. Engelfriet, E.M. Schmidt; IO and OI; JCSS 15 (1977), 328–353 and JCSS 16 (1978), 67–99.Google Scholar
  16. [EV1]
    J. Engelfriet, H. Vogler; Macro tree transducers; Inf-Memorandum Nr. 7 (1982), Twente University of Technology; to appear in JCSS.Google Scholar
  17. [EV2]
    J. Engelfriet, H. Vogler; Regular characterizations of macro tree transducers; 9th Colloquium on Trees in Algebra and Programming, March 1984, Bordeaux, France (Ed. B. Courcelle), Cambridge University Press, p. 103–117.Google Scholar
  18. [EV3]
    J. Engelfriet, H. Vogler; Pushdown machines for the macro tree transducer; Technical Report 84-13, Applied Mathematics and Computer Science Dept., University of Leiden, The Netherlands; also to appear as Inf-Memorandum at Twente University of Technology, Netherlands.Google Scholar
  19. [EV4]
    J. Engelfriet, H. Vogler; Pushdown machines for high level tree transducers; to appear as technical report at University of Leiden.Google Scholar
  20. [Fi]
    M.J. Fischer; Grammars with macro-like productions; Ph.D. Thesis, Harvard University, USA, 1968.Google Scholar
  21. [Gr]
    S.A. Greibach; Full AFLs and nested iterated substitution; Inf. and Contr. 16 (1970), 7–35.CrossRefGoogle Scholar
  22. [Gu]
    I. Guessarian; Pushdown tree automata; Math. Syst. Theory 16 (1983), 237–263.CrossRefGoogle Scholar
  23. [Ho]
    C.A.R. Hoare; Proof of correctness of data representations; Acta Informatica I (1972), 271–281.CrossRefGoogle Scholar
  24. [Kn]
    D.E. Knuth; Semantics of context-free languages; Math. Syst. Theory 2 (1968), 127–145; correction:Math. Syst. Theory 5 (1971), 95–96.CrossRefGoogle Scholar
  25. [Ma]
    T.S.E. Maibaum; A generalized approach to formal languages; JCSS 8 (1974),409–439.Google Scholar
  26. [Ms]
    A.N. Masiov; Multi-level stack automata; Probl. of Inf. Transm. 12 (1976), 38–43.Google Scholar
  27. [MV]
    D.F. Martin, S.A. Vere; On syntax-directed transductions and tree transducers; 2nd Annual ACM Symp. on Theory of Computation, May 1970.Google Scholar
  28. [Ro]
    W.C. Rounds; Mappings and grammars on trees; Math. Syst. Theory 4 (1970), 257–287.CrossRefGoogle Scholar
  29. [Th]
    J.W. Thatcher; Generalized2 sequential machine maps; JCSS 4 (1970), 339–367.Google Scholar
  30. [Vo]
    H. Vogler; Berechnungsmodelle syntaxgeteuerter Uebersetzungen; Diplomarbeit, RWTH Aachen, April, 1981.Google Scholar
  31. [vL]
    J. van Leeuwen; Notes on pre-set pushdown automata; in “L Systems“ (eds. G. Rozenberg, A. Salomaa), Lecture Notes in Computer Science 15, Springer-Verlag, 1974, pp. 177–188.Google Scholar
  32. [Wa]
    M. Wand; An algebraic formulation of the Chomsky-hierarchy, Category Theory Applied to Computation and Control, LNCS 25, Springer, Berlin, 1975, 209–213.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Joost Engelfriet
    • 1
  • Heiko Vogler
    • 1
  1. 1.University of LeidenLeidenThe Netherlands

Personalised recommendations