Skip to main content

Nonlinear scale-space from n-dimensional sieves

Part of the Lecture Notes in Computer Science book series (LNCS,volume 1064)


The one-dimensional image analysis method know as the sieve[1] is extended to any finite dimensional image. It preserves all the usual scale-space properties but has some additional features that, we believe, make it more attractive than the diffusion-based methods. We present some simple examples of how it might be used.


  • Original Image
  • Mathematical Morphology
  • Connected Subset
  • Sequential Filter
  • Flat Zone

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. J. Andrew Bangham, Paul Ling, and Richard Harvey. Scale-space from nonlinear filters. In Proc. First International Conference on Computer Vision, pages 163–168, 1995.

    Google Scholar 

  2. J.J.Koenderink. The structure of images. Biological Cybernetics, 50:363–370, 1984.

    Google Scholar 

  3. Tony Lindeberg. Scale-space theory in computer vision. Kluwer Academic, Dordrecht, Netherlands, 1994.

    Google Scholar 

  4. Bart M. ter Harr Romeny, editor. Geometry-driven diffusion in Computer vision. Kluwer Academic, Dordrecht, Netherlands, 1994. ISBN 0-7923-3087-0.

    Google Scholar 

  5. Pietro Perona and Jitendra Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Patt. Anal. Mach. Intell., 12(7):629–639, July 1990.

    Google Scholar 

  6. G.Matheron. Random sets and integral geometry. Wiley, 1975.

    Google Scholar 

  7. J.Serra. Image analysis and mathematical morphology Volume 2: Theoretical Advances, volume 2. Academic Press, London, 1988. ISBN 0-12-637241-1.

    Google Scholar 

  8. Paul T. Jackway and Mohamed Deriche. Scale-space properties of the multiscale morphological dilation-erosion. In Proc. 11th IAPR Conference on Pattern Recognition, 1992.

    Google Scholar 

  9. R. van den Boomgaard and A. Smeulders. The morphological structure of images: the differential equations of morphological scale-space. IEEE Trans. Patt. Anal. Mach. Intell., 16(11):1101–1113, November 1994.

    Google Scholar 

  10. Corinne Vachier and Fernand Meyer. Extinction value: a new measurement of persistence. In Ionas Pitas, editor, Proc. 1995 IEEE Workshop on nonlinear signal and image processing, volume 1, pages 254–257, JUNE 1995.

    Google Scholar 

  11. M. H. Chen and P. F. Yan. A multiscale approach based upon morphological filtering. IEEE Trans. Patt. Anal. Mach. Intell., 11:694–700, 1989.

    Google Scholar 

  12. H.J.A.M.Heijmans, P.Nacken, A.Toet, and L.Vincent. Graph morphology. Journal of Visual Computing and Image Representation, 3(1):24–38, March 1992.

    Google Scholar 

  13. J. Andrew Bangham, Paul Ling, and Richard Harvey. Nonlinear scale-space in many dimensions. Internal report, University of East Anglia, 1995.

    Google Scholar 

  14. J. Andrew Bangham, Paul Ling, and Robert Young. Multiscale recursive medians, scale-space and transforms with applications to image processing. IEEE Trans. Image Processing, pages-, January 1996. Under review.

    Google Scholar 

  15. J.Serra and P.Salembier. Connected operators and pyramids. In Proc. SPIE, volume 2030, pages 65–76, 1994.

    Google Scholar 

  16. Luc Vincent. Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans. Image Processing, 2(2):176–201, April 1993.

    Google Scholar 

  17. J. A. Bangham, S. J. Impey, and F. W. D. Woodhams. A fast 1d sieve transform for multiscale signal decomposition. In EUSIPCO, 1994.

    Google Scholar 

  18. J. A. Bangham, T. G. Campbell, and M. Gabbouj. The quality of edge preservation by non-linear filters. In Proc. IEEE workshop on Visual Signal Processing and Communication, pages 37–39, 1992.

    Google Scholar 

  19. Luc Vincent. Grayscale area openings and closings, their efficent implementation and applications. In Jean Serra and Phillipe Salembier, editors, Proc. international workshop on mathematical morphology and its applications to signal processing, pages 22–27, May 1993.

    Google Scholar 

  20. P. Salembier and M. Kunt. Size sensitive multiresolution decomposition of images with rank order based filters. Signal Processing, 27:205–241, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bangham, J.A., Harvey, R., Ling, P.D., Aldridge, R.V. (1996). Nonlinear scale-space from n-dimensional sieves. In: Buxton, B., Cipolla, R. (eds) Computer Vision — ECCV '96. ECCV 1996. Lecture Notes in Computer Science, vol 1064. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61122-6

  • Online ISBN: 978-3-540-49949-7

  • eBook Packages: Springer Book Archive