Skip to main content

Volumic segmentation using hierarchical representation and triangulated surface

Part of the Lecture Notes in Computer Science book series (LNCS,volume 1064)


This article presents a new algorithm for segmenting 3D images. It is based on a dynamic triangulated surface and on a pyramidal representation. The triangulated surface, which can as well modify its geometry as its topology, segments images into their components by altering its shape according to internal and external constraints. In order to speed up the whole process, the surface performs a coarse-to-fine approach by evolving in a specifically designed pyramid of 3D images.


  • Reduction Factor
  • Real Image
  • Deformable Model
  • Image Pyramid
  • Discrete Image

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. P. J. Burt. ”Fast filter transforms for image processing”. Computer Graphics and Image Processing, 16:20–51, January 1981.

    Google Scholar 

  2. A. Chéhikian. ”Algorithmes optimaux pour la génération de pyramides passesbas et laplaciennes”. Traitement du Signal, 9:297–308, January 1992.

    Google Scholar 

  3. H.B. Griffiths. ”Surfaces”. Cambridge University Press, January 1976.

    Google Scholar 

  4. M. Kass, A. Witkin, and D. Terzopoulos. ”Snakes: active contour models”. In 1st Conference on Computer Vision, Londres, June 1987.

    Google Scholar 

  5. J.O. Lachaud and A. Montanvert. ”Volumic Segmentation using Hierarchical Representation and Triangulated Surface”. Research Report 95-37, LIP-ENS Lyon, France, November 1995.

    Google Scholar 

  6. J.O. Lachaud and A. Montanvert. ”Segmentation tridimensionnelle hiérarchique par triangulation de surface”. In 10ème Congrès Reconnaissance des Formes et Intelligence Artificielle, January 1996.

    Google Scholar 

  7. F. Leitner and P. Cinquin. ”Complex topology 3D objects segmentation”. In Advances in Intelligent Robotics Systems, volume 1609 of SPIE, Boston, November 1991.

    Google Scholar 

  8. W. E. Lorensen and H. E. Cline. ”Marching Cubes: A High Resolution 3D Surface Construction Algorithm”. Computer Graphics, 21:163–169, January 1987.

    Google Scholar 

  9. R. Malladi, J. A. Sethian, and B. C. Vemuri. ”Shape Modelling with Front Propagation: A Level Set Approach”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(2):158–174, February 1995.

    Google Scholar 

  10. J.V. Miller, D.E. Breen, W.E. Lorensen, R.M. O'Barnes, and M.J. Wozny. ”Geometrically deformed models: A method for extracting closed geometric models from volume data”. Computer Graphics, 25(4), July 1991.

    Google Scholar 

  11. R. Szeliski and D. Tonnesen. ”Surface Modeling with oriented Particle Systems”. Technical Report CRL-91-14, DEC Cambridge Research Lab., December 1991.

    Google Scholar 

  12. D. Terzopoulos and A. Witkin. ”Deformable Models: Physically based models with rigid and deformable components”. IEEE Computer Graphics and Applications, 8(6):41–51, November 1988.

    Google Scholar 

  13. P. Volino and Thalmann N. Magnenat. ”Efficient self-collision detection on smoothly discretized surface animations using geometrical shape regularity”. In Eurographics'94, volume 13(3), September 1994.

    Google Scholar 

  14. R.T. Whitaker. ”Volumetric deformable models: active blobs”. In VBC, volume 2359 of SPIE, pages 122–134, March 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lachaud, JO., Montanvert, A. (1996). Volumic segmentation using hierarchical representation and triangulated surface. In: Buxton, B., Cipolla, R. (eds) Computer Vision — ECCV '96. ECCV 1996. Lecture Notes in Computer Science, vol 1064. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61122-6

  • Online ISBN: 978-3-540-49949-7

  • eBook Packages: Springer Book Archive