Structure in average case complexity

  • Christoph Karg
  • Rainer Schuler
Session 3A
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1004)


In 1990 Schapire gave an equivalent characterization of Levin's notion of functions, that are polynomial on average. This characterization gives a very smooth translation from worst case complexity to average case complexity of the notions for time and space complexity. We prove tight space and time hierarchy theorems and discuss the structure of deterministic and nondeterministic average case complexity classes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.L. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I. Springer, 1988.Google Scholar
  2. 2.
    S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the theory of average case complexity. JCSS, 44(2):193–219, 1992.Google Scholar
  3. 3.
    R.V. Book. Tally languages and complexity classes. Inf. and Control, 26:281–287, 1974.Google Scholar
  4. 4.
    R.V. Book and D. Du. The existence and density of generalized complexity cores. J. ACM, 34(3):718–730, 1987.Google Scholar
  5. 5.
    J. Cai and A. Selman. Average time complexity classes. Technical Report TR95-019, ECCC Trier, 1995.Google Scholar
  6. 6.
    S.A. Cook. A hierarchy for nondeterministic time complexity. JCSS, 7:343–353, 1973.Google Scholar
  7. 7.
    M. Goldmann, P. Grape, and J. Håstad. On average time hierarchies. IPL, 49:15–20, 1994.Google Scholar
  8. 8.
    O. Goldreich. Towards a theory of average case complexity. Technical report, Technion Haifa, Israel, 1988.Google Scholar
  9. 9.
    Y. Gurevich. Average case complexity. JCSS, 42(3):346–398, 1991.Google Scholar
  10. 10.
    F. C. Hennie and R. E. Stearns. Two-tape simulation of multitape turing machines. J. ACM, 13(4):533–546, 1966.Google Scholar
  11. 11.
    R. Impagliazzo. A personal view of average-case complexity. In Proc. 10th STRUCTURE, pages 134–147, 1995.Google Scholar
  12. 12.
    C. Karg. Strukturfragen im Umfeld der Durchschnittskomplexität. Master's thesis, Universität Ulm, 1994.Google Scholar
  13. 13.
    K.I. Ko and H. Friedman. Computational complexity of real functions. TCS, 20:323–352, 1982.Google Scholar
  14. 14.
    L. Levin. Problems, complete in “average” instance. In Proc. 16th STOC, page 465, 1984.Google Scholar
  15. 15.
    L. Levin. Average case complete problems. SIAM J. Comput., 15:285–286, 1986.Google Scholar
  16. 16.
    R. Reischuk and C. Schindelhauer. Precise average case complexity. In Proc. 10th STACS, 1993.Google Scholar
  17. 17.
    R.E. Schapire. The emerging theory of average case complexity. Technical Report 431, MIT, 1990.Google Scholar
  18. 18.
    R. Schuler. Some properties of sets tractable under every polynomial-time computable distribution. IPL, 1995.Google Scholar
  19. 19.
    R. Schuler and O. Watanabe. Towards average-case complexity analysis of NP optimization problems. In Proc. 10th STRUCTURE, pages 148–159, 1995.Google Scholar
  20. 20.
    R. Schuler and T. Yamakami. Structural average case complexity. In Proc. 12th FST&TCS LNCS 652, pages 128–139, 1992.Google Scholar
  21. 21.
    R. Schuler and T. Yamakami. Sets computable in polynomial time on average. In Proc. 1st International Computing and Combinatorics Conference, 1995.Google Scholar
  22. 22.
    J. Wang and J. Belanger. On average P vs. average NP. In K. Ambos-Spies, S. Homer, and U. Schöning, editors, Complexity Theory—Current Research. Cambridge University Press, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Christoph Karg
    • 1
  • Rainer Schuler
    • 1
  1. 1.Abteilung für Theoretische InformatikUniversität UlmUlm

Personalised recommendations