Advertisement

Edge-coloring algorithms

  • Shin-ichi Nakano
  • Xiao Zhou
  • Takao Nishizeki
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1000)

Abstract

The edge-coloring problem is one of the fundamental problems on graphs, which often appears in various scheduling problems like the file transfer problem on computer networks. In this paper, we survey recent advances and results on the classical edge-coloring problem as well as the generalized edge-coloring problems, called the f-coloring and Φ-coloring problems. In particular we review various upper bounds on the minimum number of colors required to edge-color graphs, and present efficient algorithms to edge-color graphs with a number of colors not exceeding the upper bounds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A. V., Hopcroft, J. E., Ullman, J. D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, MA (1974).Google Scholar
  2. 2.
    Andersen, L.: On edge colorings of graphs. Math. Scand. 40 (1977) 161–175.Google Scholar
  3. 3.
    Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Appl. Math. 23 (1989) 11–24.CrossRefGoogle Scholar
  4. 4.
    Bodlaender, H. L.: Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees. Journal of Algorithms 11 (1990) 631–643.CrossRefGoogle Scholar
  5. 5.
    Coffman, Jr, E. G., Garey, M. R., Johnson, D. S., LaPaugh, A. S.: Scheduling file transfers. SIAM J. Comput. 14 (1985) 744–780.CrossRefGoogle Scholar
  6. 6.
    Chrobak, M., Nishizeki, T.: Improved edge-coloring algorithms for planar graphs. Journal of Algorithms 11 (1990) 102–116.CrossRefGoogle Scholar
  7. 7.
    Chrobak, M., Yung, M.: Fast algorithms for edge-coloring planar graphs. Journal of Algorithms 10 (1989) 35–51.CrossRefGoogle Scholar
  8. 8.
    Cole, R., Hopcroft, J.: On edge coloring bipartite graphs. SIAM J. Comput. 11 (1982) 540–546.CrossRefGoogle Scholar
  9. 9.
    Ehrenfeucht, A., Faber, V., Kierstead, H. A.: A new method of proving theorems on chromatic index. Discrete Mathematics 52 (1984) 159–164.CrossRefGoogle Scholar
  10. 10.
    Fiorini, S., Wilson, R. J.: Edge-Colouring of Graphs, Pitman, London (1977).Google Scholar
  11. 11.
    Gabow, H. N., Kariv, O.: Algorithms for edge coloring bipartite graphs. SIAM J. Comput. 11 (1982) 117–129.CrossRefGoogle Scholar
  12. 12.
    Gabow, H. N., Nishizeki, T., Kariv, O., Leven, D., Terada, O.: Algorithms for edgecoloring graphs. Tech. Rep. TRECIS-8501, Tohoku Univ. (1985).Google Scholar
  13. 13.
    Garey, M. R., Johnson, D. S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., San Francisco (1979).Google Scholar
  14. 14.
    Goldberg, M. K.: Edge-colorings of multigraphs: recoloring techniques. Journal of Graph Theory 8 (1984) 122–136.Google Scholar
  15. 15.
    Hakimi, S. L., Kariv, O.: On a generalization of edge-coloring in graphs. Journal of Graph Theory 10 (1986) 139–154.Google Scholar
  16. 16.
    Hilton, A. J. W., de Werra, D.: Sufficient conditions for balanced and for equitable edge-colorings of graphs. O. R. Working paper 82/3, Dépt. of Math., école Polytechnique Fédérate de Lausanne, Switzerland (1982).Google Scholar
  17. 17.
    Hochbaum, D. S., Nishizeki, T., Shmoys, D. B.: A better than “best possible” algorithm to edge color multigraphs. Journal of Algorithms 7 (1986) 79–104.CrossRefGoogle Scholar
  18. 18.
    Holyer, I. J.: The NP-completeness of edge colourings. SIAM J. Comput. 10 (1980) 718–720.CrossRefGoogle Scholar
  19. 19.
    Karloff, H. J., Shmoys, D. B.: Efficient parallel algorithms for edge-coloring problems. Journal of Algorithms 8 (1987) 39–52.CrossRefGoogle Scholar
  20. 20.
    König, D., über Graphen und iher Anwendung auf Determinantentheorie und Mengenlehre. Math. Ann. 77 (1916) 453–465.CrossRefGoogle Scholar
  21. 21.
    Lev, G. F., Pippenger, N., Valiant, L. G.: A fast parallel algorithm for routing in permutation networks, IEEE Trans. Comput., 30 (1981) 93–100.Google Scholar
  22. 22.
    Marcotte, O.: Exact edge-coloring of graphs without prescribed minors. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 1 (1990) 235–249.Google Scholar
  23. 23.
    Nakano, S., Nishizeki, T., Saito, N.: On the f-coloring of multigraphs. IEEE Trans. Circuits and Syst. CAS-35 (1988) 345–353.CrossRefGoogle Scholar
  24. 24.
    Nakano, S., Nishizeki, T., Saito, N.: On the fg-coloring of graphs. Combinatorica 10 (1990) 67–80.CrossRefGoogle Scholar
  25. 25.
    Nakano, S., Nishizeki, T.: Scheduling file transfers under port and channel constraints. International Journal of Foundation of Computer Science 4 (1993) 101–115.CrossRefGoogle Scholar
  26. 26.
    Nakano, S., Nishizeki, T.: Approximation algorithms for the f-edge-coloring of multigraphs. Trans. of Japan SIAM 3 (1993) 279–307 (in Japanese).Google Scholar
  27. 27.
    Nishizeki, T., Kashiwagi, K.: On the 1.1 edge-coloring of multigraphs. SIAM J. Disc. Math. 3 (1990) 391–410.CrossRefGoogle Scholar
  28. 28.
    Seymour, P. D.: On multicolouring of cubic graphs, and conjecture of Fulkerson and Tutte. Proc. London Math. Soc. 38 (1979) 423–460.Google Scholar
  29. 29.
    Seymour, P. D.: Colouring series-parallel graphs. Combinatorica 10 (1990) 379–392.CrossRefGoogle Scholar
  30. 30.
    Shannon, C. E.: A theorem on coloring the lines of a network. J. Math. Phys. 28 (1949) 148–151.Google Scholar
  31. 31.
    Terada, O., Nishizeki, T.: Approximate algorithms for the edge-coloring of graphs. Trans. IEICE Japan J65-D (1982) 1382–1389 (in Japanese).Google Scholar
  32. 32.
    Vizing, 2. G.: On an estimate of the chromatic class of a p-graph. Discret Analiz 3 (1964) 25–30 (in Russian).Google Scholar
  33. 33.
    Vizing, V. G.: The chromatic class of a multigraph. Kibernetica(Kief) 3 (1965) 29–39.Google Scholar
  34. 34.
    de Werra, D.: Some results in chromatic scheduling. Zeitschrift fur Oper. Res. 18 (1974) 167–175.CrossRefGoogle Scholar
  35. 35.
    de Werra, D.: A few remarks on chromatic scheduling. in Combinatorial Programming: Methods and Applications, ed. Roy, B., D. Reidel Pub. Comp., Dordrecht-Holland (1975) 337–342.Google Scholar
  36. 36.
    Zhou, X., Nakano, S., Nishizeki, T.: A linear algorithm for edge-coloring partial k-tree. Th. Lengauer (Ed.), Algorithms — ESA'93, Proc. First Annual European Symposium, Lect. Notes in Comp. Sci., Vol. 726, Springer-Verlag (1993) 409–418.Google Scholar
  37. 37.
    Zhou, X., Nakano, S., Nishizeki, T.: A parallel algorithm for edge-coloring partial k-tree. in: E.M. Schmidt, S. Skyum (Eds.), Algorithm Theory — SWAT '94, Proc. 4th Scand. Workshop on Algorithm Theory, Lect. Notes in Comp. Sci., Vol. 824, Springer-Verlag (1994) 359–369.Google Scholar
  38. 38.
    Zhou, X., Nakano, S., Suzuki, H., Nishizeki, T.: An efficient algorithm for edgecoloring series-parallel multigraphs. in: I. Simon (Ed.), LATIN'92, Proc. 1st Latin American Symposium on Theoretical Informatics, Lect. Notes in Comp. Sci., Vol. 583, Springer-Verlag (1992) 516–529.Google Scholar
  39. 39.
    Zhou, X., Nishizeki, T.: Edge-coloring and f-coloring for various classes of graphs. in: D-Z. Du, X-S. Zhang (Eds.), Algorithms and Computation, Proc. 5th In. Symposium (ISAAC'94), Lect. Notes in Comp. Sci., Vol. 834, Springer-Verlag (1994) 199–207.Google Scholar
  40. 40.
    Zhou, X., Nishizeki, T.: Optimal parallel algorithms for edge-coloring partial k-trees with bounded degrees. Trans. IEICE Japan E78-A (1995) 463–469.Google Scholar
  41. 41.
    Zhou, X., Nishizeki, T.: Simple reductions of f-coloring to edge-colorings. Proc. of First Ann. Int. Comput. and Combinatorics Conf., Lect. Notes in Comp. Sci., Springer-Verlag, to appear.Google Scholar
  42. 42.
    Zhou. X., Suzuki, H., Nishizeki, T.: A linear algorithm for edge-coloring seriesparallel multigraphs. Journal of Algorithms, to appear.Google Scholar
  43. 43.
    Zhou, X., Suzuki, H., Nishizeki, T.: Sequential and parallel algorithms for edgecoloring series-parallel multigraphs. Proc. of the Third Conference on Integer Programming and Combinatorial Optimization (1993) 129–146.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Shin-ichi Nakano
    • 1
  • Xiao Zhou
    • 1
  • Takao Nishizeki
    • 1
  1. 1.Graduate School of Information SciencesTohoku UniversitySendaiJapan

Personalised recommendations