Data-structures for the verification of timed automata

  • Eugene Asarin
  • Marius Bozga
  • Alain Kerbrat
  • Oded Maler
  • Amir Pnueli
  • Anne Rasse
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1201)


In this paper we suggest numerical decision diagrams, a bdd-based data-structure for representing certain subsets of the Euclidean space, namely those encountered in verification of timed automata. Unlike other representation schemes, ndd's are canonical and provide for all the necessary operations needed in the verification and synthesis of timed automata. We report some preliminary experimental results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AD94]
    R. Alur and D.L. Dill, A Theory of Timed Automata, Theoretical Computer Science 126, 183–235, 1994.Google Scholar
  2. [AHH93]
    R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded systems. In IEEE Real-time Systems Symposium, pages 2–11, 1993.Google Scholar
  3. [BGK+]
    J. Bengtsson, W.O.D. Griffioen, K.J. Kristoffersen, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Verification of an audio protocol with bus collision using UPPAAL. In R. Alur and T.A. Henzinger (Eds. Proc. CAV'96, LNCS 1102, 244–256, Springer, 1996.Google Scholar
  4. [Bry86]
    R.E. Bryant, Graph-based Algorithms for Boolean Function Manipulation, IEEE Trans. on Computers C-35, 677–691, 1986.Google Scholar
  5. [BCM+93]
    J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang, Symbolic Model-Checking: 1020 States and Beyond, Proc. LICS'90, Philadelphia, 1990.Google Scholar
  6. [CC95]
    S.V. Campos and E.M. Clarke. Real-time symbolic model checking for discrete time models, in T. Rus and C. Rattray (Eds.), AMAST Series in Computing: Theories and Experiences for Real-Time System Development, World Scientific, 1995.Google Scholar
  7. [DOY94]
    C. Daws, A. Olivero and S. Yovine, Verifying et-lotos Programs with Kronos, Proc. FORTE'94, Bern, 1994.Google Scholar
  8. [Dil89]
    D.L. Dill, Timing Assumptions and Verification of Finite-State Concurrent Systems, in J. Sifakis (Ed.), Automatic Verification Methods for Finite State Systems, LNCS 407, Springer, 1989.Google Scholar
  9. [BFK96]
    M. Bozga, J.-C. Fernandez, A. Kerbrat, A Symbolic μ-calculus Model Checker for Automata with Variables, Unpublished Manuscript, Verimag, 1996.Google Scholar
  10. [GPV94]
    A. Göllü, A. Puri and P. Varaiya, Discretization of Timed Automata, Proc. 33rd CDC, 1994.Google Scholar
  11. [HNSY94]
    T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, Symbolic Model-checking for Real-time Systems, Information and Computation 111, 193–244, 1994.Google Scholar
  12. [MP95]
    O. Maler and A. Pnueli, Timing Analysis of Asynchronous Circuits using Timed Automata, in P.E. Camurati and H. Eveking (Eds.), Proc. CHARME'95, 189–205, LNCS 987, Springer, 1995.Google Scholar
  13. [McM93]
    K.L. McMillan, Symbolic Model-Checking: an Approach to the State-Explosion problem, Kluwer, 1993.Google Scholar
  14. [S95]
    F. Somenzi, CUDD: CU Decision Diagram Package, 1995.Google Scholar
  15. [Rau95]
    A. Rauzy, Toupie=μ-calculus + constraints. In P. Wolper, editor, Proc. CAV'95, LNCS 939, 114–126, Springer, 1995.Google Scholar
  16. [WB95]
    P. Wolper and B. Boigelot. An automata-theoretic approach to presburger arithmetic constraints. In Proc. Static Analysis Symposium, LNCS 983, 21–32, Springer, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Eugene Asarin
    • 3
  • Marius Bozga
    • 1
  • Alain Kerbrat
    • 1
  • Oded Maler
    • 1
  • Amir Pnueli
    • 2
  • Anne Rasse
    • 1
  1. 1.VERIMAG, Centre EquationGièresFrance
  2. 2.Dept. of Computer ScienceRehovotIsrael
  3. 3.Institute for Information Transmission ProblemsMoscowRussia

Personalised recommendations