A digital real-time simulator for rail-vehicle control system testing

  • Peter Terwiesch
  • Erich Scheiben
  • Anders Jenry Petersen
  • Thomas Keller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1201)


Modern electrical locomotives are powered by controlled power converters. Integration testing of the vehicle control system is performed using real-time simulation. The present contribution presents an evaluation of a digital real-time simulator for this purpose, with particular emphasis on switching and events, which is one of the more demanding tasks in the real-time simulation of hybrid systems. A pragmatic solution to the difficult problem of simulating hybrid systems in real-time is proposed.


digital real-time simulation hardware-in-the-loop control system testing integration methods discrete events hybrid system variable causality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Bühler: A driving simulator for investigating the static and dynamic characteristics of speed regulating systems for traction vehicles, Bulletin Oerlikon No.364/365, pp15–22, 1965.Google Scholar
  2. [2]
    H.P. Wenk: SIMSTAR-Ein modernes Simulationswerkzeug. ABB Verkehrssysteme AG, Roll-on, no.3, 1992.Google Scholar
  3. [3]
    G.A. Korn, J.V. Wait: Digital continuous-system simulation, Prentice-Hall, 1978.Google Scholar
  4. [4]
    F.E. Cellier: Continuous System Modeling. Springer-Verlag, 1991.Google Scholar
  5. [5]
    A. Naim: Systems modeling and computer simulation. M. Dekker, 1988.Google Scholar
  6. [6]
    O. Ruhle: Echtzeitsimulation schneller transienter Vorgänge mit Hilfe von Parallelrechnern, VDI-Fortschrittsber., Reihe 20, Nr. 127, 1994.Google Scholar
  7. [7]
    Technical Committee on Continuous Simulation Languages, Simulation Councils, Inc. (SCi): The SCi Continuous System Simulation Language”, Simulation, no.9, pp.281–303, 1967.Google Scholar
  8. [8]
    Locomotive 2000 product description, ABB Transportation Systems Ltd, Schweizer Eisenbahn-Revue 10/1991.Google Scholar
  9. [9]
    G.H. Golub, J.M. Ortega: Scientific computing and differential equations: an introduction to numerical methods. Academic Press, 1992.Google Scholar
  10. [10]
    O. Rathjen: Digitale Echtzeit-simulation: Simulation einer Hoch-spannungs-Gleichstrom-Übertragung. Vieweg, 1993.Google Scholar
  11. [11]
    T. Hopkins, C. Phillips: Numerical methods in practice: using the NAG Library. Addison-Wesley, 1988.Google Scholar
  12. [12]
    G.M. Asher, V. Eslamdoost: A novel causality changing method for the bond graph modelling of variable topology switching circuits. In Proc. IMACS Symposium, Lille 1991, pp371–376.Google Scholar
  13. [13]
    J.E. Strömberg, J. Top, U. Södermann: Variable causality in bond graphs caused by discrete effects. In Proc. of the First Int. Conf. on Bond Graph Modeling (ICBGM '93), SCS, San Diego, 1993.Google Scholar
  14. [14]
    W. Borutzky, J.F. Broenink, K.C. Wijbrans: Graphical description of physical system models containing discontinuities. In Proc. ESM'93, Lyon, 1993, pp203–207.Google Scholar
  15. [15]
    H. Hanselmann: DSP in Control: The Total Development Environment. Int. Conf. on Signal Processing Applications and Technology, Boston, MA, 1995.Google Scholar
  16. [16]
    H. Elmqvist, F.E. Cellier, M. Otter: Object-oriented modeling of hybrid systems. ESS'93, European Simulation Symposium, Delft, NL, Oct 25–28, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Peter Terwiesch
    • 1
  • Erich Scheiben
    • 1
  • Anders Jenry Petersen
    • 1
  • Thomas Keller
    • 2
  1. 1.Communication & Control GroupABB Corporate ResearchBaden- DättwilSwitzerland
  2. 2.Dept. BAAABB Daimler-Benz Transportation Propulsion SystemsZürichSwitzerland

Personalised recommendations