Topological methods for algebraic specification

  • Karl Meinke
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 906)


We introduce an algebraic construction for the Hausdorff extension H(A) of a many-sorted universal algebra A with respect to a family T of Hausdorff topologies on the carrier sets of A. This construction can be combined with other algebraic constructions, such as the initial model construction, to provide methods for the algebraic specification of uncountable algebras, e.g. algebras of reals, function spaces and streams.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A.V. Arkhangel'skii [1981], Classes of topological groups, Uspekhi. Matem. Nauk. 36 (1981), No 1, 127–146.Google Scholar
  2. G. Birkhoff [1935], On the structure of abstract algebras, Proc. Camb. Philos. Soc. 31 (1935), 433–454.Google Scholar
  3. P.M. Cohn [1981], Universal Algebra, second edition, D. Reidel, Dordrecht, 1981.Google Scholar
  4. D. von Dantzig [1933], Zur topologischen Algebra, Math. Ann. 107 (1933), 587–626.CrossRefGoogle Scholar
  5. J. Dugundji [1966], Topology, Allyn and Bacon Inc, Boston, 1966.Google Scholar
  6. H. Ehrig et al [1988], H. Ehrig, F. Parisi-Presicce, P. Boehm, G. Rieckhoff, C. Dimitrovici and M. Grosse-Rhode, Algebraic data type and process specifications based on projection spaces, 23–43 in: D. Sanella and A. Tarlecki (eds), Recent Trends in Data Type Specification, LNCS 332, Springer, Berlin, 1988.Google Scholar
  7. ADJ [1975], J.A. Goguen, J. Thatcher, E. Wagner and J.B. Wright, Abstract data types as initial algebras and the correctness of data representations, in: A. Klinger (ed), Computer Graphics, Pattern Recognition and Data Structure, 89–93, IEEE 1975.Google Scholar
  8. J.L. Kelley [1955], General Topology, Van Nostrand, Princeton, 1955.Google Scholar
  9. A.I. Mal'cev [1957], Free topological algebras, Izv. Acad. Nauk. SSSR 21 (1957) 171–198. English translation: Trans. Amer. Math. Soc. (2) 17 (1961).Google Scholar
  10. A.A. Markov [1945], On free topological groups, Izv. Acad. Nauk. SSSR 9 (1945), 3–64. English translation: Trans Amer. Math. Soc. 8 (1962), 195–272.Google Scholar
  11. K. Meinke, Universal algebra in higher types, Theoretical Computer Science 100 (1992), 385–417.CrossRefGoogle Scholar
  12. K. Meinke and J.V. Tucker [1993], Universal Algebra, 189–411 in: S. Abramsky, D. Gabbay and T.S.E. Maibaum (eds), Handbook of Logic in Computer Science, Oxford University Press, Oxford, 1993.Google Scholar
  13. B. Möller [1987], Higher-order algebraic specification, Habilitationsschrift, Fakultät Mathematik und Informatik, TU München, 1987.Google Scholar
  14. L.S. Pontrjagin [1954], Topological Groups, second edition, Princeton University Press, Princeton, 1954.Google Scholar
  15. M. Smyth [1993], Topology, 642–761 in: S. Abramsky, D. Gabbay and T.S.E. Maibaum (eds), Handbook of Logic in Computer Science, Oxford University Press, Oxford, 1993.Google Scholar
  16. V. Stoltenberg-Hansen and J.V. Tucker [1991], Algebraic equations and fixedpoint equations in inverse limits, Theoretical Computer Science, 87 (1991), 1–24.CrossRefGoogle Scholar
  17. W. Taylor [1977], Varieties of topological algebras, J. Austral. Math. Soc. 23A (1977), 207–241.Google Scholar
  18. M. Wand [1981], Final algebra semantics and data type extensions, J. Comput. System Sci. 19 (1981) 27–44.CrossRefGoogle Scholar
  19. S. Warner [1989], Topological Fields, Mathematics Studies, Vol 157, North Holland, Amsterdam, 1989.Google Scholar
  20. M. Wirsing [1990], Algebraic Specification, 675–788 in: J. van Leeuwen (ed), Handbook of Theoretical Computer Science, Volume B, Formal Models and Semantics, Elsevier, Amsterdam, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Karl Meinke
    • 1
  1. 1.Department of Computer ScienceUniversity College of SwanseaSwanseaGreat Britain

Personalised recommendations