Advertisement

Verification using PEP

  • Stephan Melzer
  • Stefan Römer
  • Javier Esparza
Conference System Presentations
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1101)

Abstract

PEP is a tool for the design, analysis and the verification of parallel programs. Two approaches are presented in this paper being the underlying technique of the verification component of PEP.

Key words

Verification Net Unfoldings Linear Programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernd Baumgarten. Petri-Netze. Grundlagen und Anwendungen. BI-Wissenschaftsverlag, 1990.Google Scholar
  2. 2.
    Eike Best. Esprit Basic Research Action 3148 DEMON (Design Methods Based on Nets) — Aims, Scope and Achievements. In Advances in Petri Nets, volume 609 of Lecture Notes in Computer Science, pages 1–20. Springer Verlag, 1992.Google Scholar
  3. 3.
    Eike Best, Raymond Devillers, and Jon G. Hall. The Box Calculus: A new causal Algebra with multi-label Communication. In Advances in Petri Nets 92, volume 609 of Lecture Notes in Computer Science, pages 21–69. Springer-Verlag, 1992.Google Scholar
  4. 4.
    Eike Best, Raymond Devillers, Elisabeth Pelz, Arend Rensink, Manuel Silva, and Enrique Teruel. Caliban — Esprit Basic Research WG 6067. In Structures in Concurrency Theory, Workshops in Computing, pages 2–31, Berlin, May 1995. Springer Verlag.Google Scholar
  5. 5.
    Eike Best and Hans Fleischhack. PEP: Programming Environment Based on Petri Nets. Hildesheimer Informatik Bericht 14/95, Universtät Hildesheim, May 1995.Google Scholar
  6. 6.
    Eike Best and Richard Pinder Hopkins. B(PN)2 — a Basic Petri Net Programming Notation. In Proceedings of PARLE '93, volume 694 of Lecture Notes in Computer Science, pages 379–390. Springer-Verlag, 1993.Google Scholar
  7. 7.
    P. Cousot and N.Halbwachs. Automatic discovery of linear restraints among variables of a program. In 5th ACM Symposium on Principles of Programming Languages. ACM-Press, 1978.Google Scholar
  8. 8.
    Javier Esparza. Model checking using net unfoldings. Science of Computer Programming 23, pp. 151–195 (1994).Google Scholar
  9. 9.
    Javier Esparza, Stefan Römer, and Walter Vogler. An Improvement of McMillan's Unfolding Algorithm. Sonderforschungsbericht 342/12/95 A, Technische Universtät München, München, August 1995. (to appear in the proceedings of TACAS '96).Google Scholar
  10. 10.
    Thom Frühwirth, Alexander Herold, Volker Küchenhoff, Thierry Le Provost, Pierre Lim, Eric Monfroy, and Mark Wallace. Constraint Logic Programming — An Informal Introduction. ECRC-93-5, European Computer-Industry Research Centre, München, 1993.Google Scholar
  11. 11.
    N. Halbwachs. About synchronous programming and abstract interpretation. In SAS '94: Static Analysis Symposium, volume 864 of Lecture Notes in Computer Science, pages 179–192. Springer-Verlag, 1994.Google Scholar
  12. 12.
    K. L. McMillan. Using unfoldings to avoid the state explosion problem in the verification of asynchronous circuits. In 4th Workshop on Computer Aided Verification, pages 164–174, Montreal, 1992.Google Scholar
  13. 13.
    Stephan Melzer. Büchi Nets — A Pendant to Büchi Automata. Sonderforschungsbericht, Technische Universität, 1996. (in preparation).Google Scholar
  14. 14.
    Stephan Melzer and Javier Esparza. Checking system properties via integer programming. Sonderforschungsbericht 342/13/95 A, Technische Universität München, August 1995. (to appear in the proceedings of ESOP '96).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Stephan Melzer
    • 1
  • Stefan Römer
    • 1
  • Javier Esparza
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenMünchen

Personalised recommendations