Formal verification of Signal programs: Application to a power transformer station controller

  • Michel Le Borgne
  • Hervé Marchand
  • Éric Rutten
  • Mazen Samaan
Conference Session 4: Program Verification
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1101)


We present a methodology for the verification of reactive systems, and its application to a case study. Systems are specified using the synchronous data flow language Signal. As this language is based on an equational approach (i.e.Signal programs are constraint equations between signals), it is natural to translate its Boolean part into a system of polynomial equations over three values denoting true, false and absent. Using operations in algebraic geometry on the polynomials, it is possible to check properties concerning the system, such as liveness, invariance, reachability and attractivity. We apply this method to the verification of the automatic circuit breaking control system of an electric power transformer station. This system handles the reaction to electrical defects on high voltage lines.


Reactive systems synchronous language verification case study 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Alpern and F. B. Schneider.-Recognizing safety and liveness.-Technical Report 86-727, Departement of Computer Science Cornell University, Ithaca, New York, January 1986.Google Scholar
  2. 2.
    T. A. Amabegnon, L. Besnard, and P. Le Guernic.-Arborescent canonical form of booelan expressions.-Technical Report 2290, INRIA, June 1994.-(ftp:, file/INRIA/publications/RR/ Scholar
  3. 3.
    T. Amagbegnon, P. Le Guernic, H. Marchand, and E. Rutten.-Signalthe specification of a generic, verified production cell controller, volume 891 of LNCS (Lecture Notes in Computer Science), chapter VII, pages 115–129.-Springer Verlag, January 1995.Google Scholar
  4. 4.
    F. Boussinot and R. de Simone.-The Esterel language.-Proc. of the IEEE, 9(79):1293–1304, September 1991.Google Scholar
  5. 5.
    B. Dutertre.-Spécification et preuve de systèmes dynamiques: Application à Signal.-Thèse, Université de Rennes, December 1992.-(In French).Google Scholar
  6. 6.
    B. Dutertre and M. Le Borgne.-Control of polynomial dynamic systems: an example.-Technical Report 2193, INRIA, January 1994.-ftp:, file /INRIA/publications/RR/ Scholar
  7. 7.
    N. Halbwachs, F Lagnier, and C. Ratel.-Programming and verifying real-time systems by means of the synchronous data-flow programming language Lustre.-In IEEE Transactions on Software Engineering, Special issue on the Specification and Analysis of Real-Time Systems, September 1992.Google Scholar
  8. 8.
    M. Le Borgne.-Systèmes dynamiques sur des corps finis.-Thèse, Université de Rennes I, September 1993.-(In French).Google Scholar
  9. 9.
    M. Le Borgne, A. Benveniste, and P. Le Guernic.-Dynamical systems over galois fields and deds control problems.-In Proc. of 33 t h IEEE Conf. on Decision and Control, volume 3, pages 1505–1509, 1991.Google Scholar
  10. 10.
    P. Le Guernic, M. Le Borgne, T. Gautier, and C. Le Maire.-Programming real time application with Signal.-Proc. of the IEEE, 79(9):1321–1336, September 1991.Google Scholar
  11. 11.
    H. Marchand, E. Rutten, and Samaan M.-Specifying and verifying a transformer station in Signal and SignalGTi.-Technical Report 2521, inria, March 1995.-(ftp:, file /INRIA/publications/RR/ Scholar
  12. 12.
    P.J. Ramadge and W.M. Wonham.-The control of discrete events systems.-Proc. of the IEEE, 77(1):81–97, January 1989.Google Scholar
  13. 13.
    E. Rutten and P. Le Guernic.-The sequencing of data flow tasks in signal.-In Proceedings of the ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, Orlando, Florida. June 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Michel Le Borgne
    • 1
  • Hervé Marchand
    • 1
  • Éric Rutten
    • 1
  • Mazen Samaan
    • 2
  1. 1.IRISA/INRIA - RennesRennesFrance
  2. 2.dept. CCCEDF/DER, EPChatouFrance

Personalised recommendations