Advertisement

Extracting text from proofs

  • Yann Coscoy
  • Gilles Kahn
  • Laurent Théry
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 902)

Abstract

In this paper, we propose a method for presenting formal proofs in an intelligible form. We describe a transducer from proof objects (λ-terms in the Calculus of Constructions) to pseudo natural language that has been implemented for the Coq system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Alf93]
    L. Magnusson, B. Nordström, The ALF proof editor and Us proof engine, in Proceedings of the 1993 Types Worshop, Nijmegen, LNCS 806, 1994.Google Scholar
  2. [Chester76]
    D. Chester, The translation of Formal Proofs into English, Artificial Intelligence 7 (1976), 261–278, 1976.CrossRefGoogle Scholar
  3. [Cohn88]
    A. Cohn, Proof Accounts in HOL, unpublished draft.Google Scholar
  4. [Coscoy94]
    Y. Coscoy, Traductions de preuves en langage naturel pour le systeme Coq, Rapport de Stage, Ecole Polytechnique, 1994.Google Scholar
  5. [Coq91]
    G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Paulin-Mohring, B. Werner, The Coq Proof Assistant User's Guide, INRIA Technical Report no. 134, 1991.Google Scholar
  6. [CtCoq94]
    Y. Bertot, the CtCoq Interface, available by ftp at babar.inria.fr: /pub/centaur/ctcoq.Google Scholar
  7. [deBruijn87]
    N.G. de Bruijn, The Mathematical Vernacular, a language for Mathematics with typed sets in Proceedings from the Workshop on Programming Logic, P. Dybjer et al., Programming Methodology Group, Volume 37, University of Göteborg, 1987.Google Scholar
  8. [Ep93]
    A. Edgar, F.J. Pelletier, Natural language explanation of Natural Deduction proofs, in Proceedings of the First Conference of the Pacific Association for Computational Linguistics, Simon Fraser University, 1993.Google Scholar
  9. [Felty88]
    A. Felty, Proof explanation and revision, Technical Report, University of Pennsylvania MS-CIS-88-17, 1988.Google Scholar
  10. [Gentzen69]
    G. Gentzen, Investigations into logical deduction, in “The collected papers of Gerhard Gentzen”, M.E. Szabo (Ed.), pp. 69–131, North Holland, 1969.Google Scholar
  11. [Hol92]
    M.J.C. Gordon, T.F. Melham, HOL: a proof generating system for higher-order logic, Cambridge University Press, 1992.Google Scholar
  12. [Huang94]
    X. Huang, Reconstructing Proofs at the Assertion Level, in Proceedings of CADE-12, Nancy, LNAI 814, Springer Verlag, 1994.Google Scholar
  13. [Lego92]
    Z. Luo, R. Pollack, LEGO proof development system: user's manual, Technical Report, University of Edinburgh, 1992.Google Scholar
  14. [Massol93]
    A. Massol, Presentation de Preuves en Langue Naturelle pour le Systéme Coq, Rapport de DEA, Universite de Nice-Sophia-Antipolis, 1993.Google Scholar
  15. [Ranta94]
    A. Ranta, Type Theory and the Informal Language of Mathematics, in Proceedings of the 1993 Types Worshop, Nijmegen, LNCS 806, 1994.Google Scholar
  16. [Théry94]
    L. Théry, Une methode distribuée de création d'interfaces et ses applications aux démonstrateurs de theoremes, PhD, Universite Denis Diderot, Paris, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Yann Coscoy
    • 1
  • Gilles Kahn
    • 1
  • Laurent Théry
    • 1
  1. 1.INRIA Sophia AntipolisFrance

Personalised recommendations