Advertisement

Fixpoint semantics for partial computed answer substitutions and call patterns

  • Maurizio Gabbrielli
  • Maria Chiara Meo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 632)

Abstract

In this paper we study a declarative (fixpoint) semantics for logic programs which correctly models several kinds of partial answers and call patterns. We first show how the Ω-semantics [5,4] can model these observables when the selection rule is not taken into account. We then define a suitable immediate consequence operator, and hence a fixpoint semantics, for partial answers and call patterns which considers also the selection rule. Each observable induces an observational equivalence on programs. The semantics are then related to the observational equivalences by investigating correctness and full abstraction properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. R. Apt. Introduction to Logic Programming. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B: Formal Models and Semantics. Elsevier, Amsterdam and The MIT Press, Cambridge, 1990.Google Scholar
  2. 2.
    K. R. Apt and M.H. van Emden. Contributions to the theory of logic programming. Journal of the ACM, 29(3):841–862, 1982.Google Scholar
  3. 3.
    R. Barbuti, R. Giacobazzi, and G. Levi. A General Framework for Semantics-based Bottom-up Abstract Interpretation of Logic Programs. Technical Report TR 12/91, Dipartimento di Informatica., Università. di Pisa, 1991. To appear in ACM Transactions on Programming Languages and Systems.Google Scholar
  4. 4.
    A. Bossi, M. Gabbrielli, G. Levi, and M, C. Meo. Contributions to the Semantics of Open Logic Programs. In Proceedings of the International Conference on Fifth Generation Computer Systems 1992, 1992. To appear.Google Scholar
  5. 5.
    A. Bossi and M. Menegus. Una Semantica Composizionale per Programmi Logici Aperti. In P. Asirelli, editor, Proc. Sixth Italian Conference on Logic Programming, pages 95–109, 1991.Google Scholar
  6. 6.
    M. Codish, D. Dams, and E. Yardeni. Bottom-up Abstract Interpretation of Logic Programs. Technical report, Dept. of Computer Science, The Weizmann Institute, Rehovot, 1990. To appear in Theoretical Computer Science.Google Scholar
  7. 7.
    E. Eder. Properties of substitutions and unifications. Journal of Symbolic Computation, 1:31–46, 1985.Google Scholar
  8. 8.
    M. Falaschi and G. Levi. Finite failures and partial computations in concurrent logic languages. Theoretical Computer Science, 75:45–66, 1990.Google Scholar
  9. 9.
    M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. A new Declarative Semantics for Logic Languages. In R. A. Kowalski and K. A. Bowen, editors, Proc. Fifth Int'l Conf. on Logic Programming, pages 993–1005. The MIT Press, Cambridge, Mass., 1988.Google Scholar
  10. 10.
    M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative Modeling of the Operational Behavior of Logic Languages. Theoretical Computer Science, 69(3):289–318, 1989.Google Scholar
  11. 11.
    M. Gabbrielli, G. Levi, and M. C. Meo. Observable Behaviors and Equivalences of Logic Programs. Research Report IIAS-RR-92-9E, International Institute for Advanced Study of Social Information Science, FUJITSU LAB. Ltd., 1992.Google Scholar
  12. 12.
    J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proc. Fourteenth Annual ACM Symp. on Principles of Programming Languages, pages 111–119. ACM, 1987.Google Scholar
  13. 13.
    J.-L. Lassez, M. J. Maher, and K. Marriott. Unification Revisited. In J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages 587–625. Morgan Kaufmann, Los Altos, Ca., 1988.Google Scholar
  14. 14.
    J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987. Second edition.Google Scholar
  15. 15.
    C. Palamidessi. Algebraic properties of idempotent substitutions. In M. S. Paterson, editor, Proc. of the 17th International Colloquium on Automata, Languages and Programming, volume 443 of Lecture Notes in Computer Science, pages 386–399. Springer-Verlag, Berlin, 1990.Google Scholar
  16. 16.
    M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a programming language. Journal of the ACM, 23(4):733–742, 1976.Google Scholar
  17. 17.
    L. Vieille. Recursive query processing: the power of logic. Theoretical Computer Science, 69:1–53, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Maurizio Gabbrielli
    • 1
  • Maria Chiara Meo
    • 1
  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly

Personalised recommendations