Skip to main content

Measuring detection and localization performance

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 687))

Abstract

This paper proposes a simple, but general, model for describing an observer's ability to find and report target objects in grayscale image backgrounds, which provides a basis for measuring the observer's combined detection- and-localization performance in various image-interpretation tasks. The model assumes that: 1) the observer's image detection response and first-choice of target location both depend on the “maximally suspicious” finding on the image, 2) a correct (first-choice) localization of the actual target occurs if and only if its location was regarded as the most suspicious and 3) a target's presence does not alter the suspicion engendered by any other (normal) image findings. Formalization of these assumptions relates the ROC curve, which measures the observer's ability to discriminate between target and nontarget images, to the “Localization Response” (LROC) curve, which measures the conjoint ability to detect and correctly localize the actual targets in the images. A two-parameter “binormal” version of this model provides the basis for an iterative, maximum-likelihood procedure that concurrently fits both the ROC and LROC curves, using an observer's image-ratings and target-localizations for a set of image interpretations. That same model can be extended to multiple-report (“free-response”) interpretations and to multiple-target images, provided that the observer's detection capability and criterion for reporting possible targets both remain invariant across images and across successive reports on a given image. That extension of the model leads to formulations for the so-called “Free-Response” (FROC) curve, and for a recently proposed “Alternative FROC” (AFROC) curve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.S. Berbaum, E.A. Franken, Jr, D.D. Dorfman, T.J. Barloon: Influence of clinical history upon detection of nodules and other lesions. Investigative Radiology 23, 48–55 (1988).

    PubMed  Google Scholar 

  2. K.S. Berbaum, E.A. Franken, Jr, D.D. Dorfman, S.A. Rooholamini, T.J. Barloon, F.M. Behlke, Y. Sato, C.H. Lu, G.Y.E. El-Khoury, F.D.W. Flickinger, W.J. Montgomery: Satisfaction of search in diagnostic radiology. Investigative Radiology 25, 133–140 (1990).

    PubMed  Google Scholar 

  3. K.S. Berbaum, E.A. Franken, Jr, D.D. Dorfman, S.A. Rooholamini, C.E. Coffman, S.H. Cornell, A.H. Cragg, F.R. Galvin, H. Honda, S.C.S. Kao, D.A. Kimball, T.J. Ryals, W.J. Sickels, T.P. Smith: Time course of satisfaction of search. Investigative Radiology 26, 640–648 (1991).

    PubMed  Google Scholar 

  4. P.C. Bunch, J.F. Hamilton, G.K. Sanderson, A.H. Simmons: A free response approach to the measurement and characterization of radiographic observer performance. Proceedings, Society of Photo-Optical and Instrumentation Engineers 154, 124–135 (1977).

    Google Scholar 

  5. A.E. Burgess: High level visual decision efficiencies. In C. Blakemore (ed.) Vision: coding and efficiency New York: Cambridge Univ. Press 1990, pp. 431–440.

    Google Scholar 

  6. A.E. Burgess, H. Ghandeharian: Visual signal detection. I: Ability to use phase information. Journal of the Optical Society of America A 1, 900–905 (1984).

    Google Scholar 

  7. A.E. Burgess, R.F. Wagner, R.J. Jennings, H.B. Barlow: Efficiency of human visual signal discrimination. Science 214, 93–94 (1981).

    PubMed  Google Scholar 

  8. D.P. Chakraborty: Maximum likelihood analysis of free-response receiver operating characteristic (FROC) data. Medical Physics 16, 561–568 (1989).

    Article  PubMed  Google Scholar 

  9. D.P. Chakraborty, E.A. Breatnach, M.V. Yester, B. Soto, G.T. Barnes, R.F. Fraser: Digital and conventional chest imaging: A modified ROC study of observer performance using simulated nodules. Radiology 158, 35–39 (1986).

    PubMed  Google Scholar 

  10. D.P. Chakraboarty, L.H.L. Winter: Free-response methodology: Alternative analysis and a new observer-performance experiment. Radiology 174, 873–881 (1990).

    PubMed  Google Scholar 

  11. H-P. Chan, K. Doi, C.J. Vyborny, R.A. Schmidt, C.E. Metz, K.L. Lam, T. Ogura, Y. Wu, H. MacMahon: Improvement in radiologists' detection of clustered microcalcifications on mammograms: The potential of computeraided diagnosis. Investigative Radiology 25, 1102–1110 (1990).

    PubMed  Google Scholar 

  12. D.D. Dorfman, E. Alf: Maximum-likelihood estimation of parameters of signal-detection theory and determination of confidence intervals — rating-method data. Journal of Mathematical Psychology 6, 487–496 (1969).

    Article  Google Scholar 

  13. W. Feller: An introduction to probability theory and its applications: Vol. 1 New York: Wiley, 1950.

    Google Scholar 

  14. J.E. Goin, J.D. Haberman, M.K. Kinder, P.A. Lambird: Analysis of mammography: A blind interpretation of BCDDP radiographs. Radiology 148, 393–396 (1983).

    PubMed  Google Scholar 

  15. D.M. Green, J.A. Swets: Signal detection theory and psychophysics New York: Wiley 1966 (reprinted Los Altos, CA: Peninsula Pub. 1988).

    Google Scholar 

  16. D.R. Grey, B.J.T. Morgan: Some aspects of ROC curve-fitting: Normal and logistic models. Journal of Mathematical Psychology 9, 128–139 (1972).

    Article  Google Scholar 

  17. K.B. Herath, P.F. Sharp: Effects of “matched filter” smoothing as measured by receiver operating characteristic curve. Physics in Medicine and Biology 21, 442–446 (1976).

    Article  PubMed  Google Scholar 

  18. P.G. Herman, J. Drummey, R.G. Swensson, S.J. Hessel, J.P. Balikian: 350 kV chest radiography has no diagnostic advantage: a comparison with 140 kV technique. American Journal of Roentgenology 138, 485–489 (1982).

    PubMed  Google Scholar 

  19. M.G. Kendall, A. Stuart: The advanced theory of statistics: Vol. 2. Inference and relationship. (4th ed.) London: Griffin, 1979.

    Google Scholar 

  20. M.F. Kijewski, R.G. Swensson, P.F. Judy: Analysis of rating data from multiple-alternative tasks. Journal of Mathematical Psychology 33, 428–451 (1989).

    Article  Google Scholar 

  21. K.L. Kundel: Predictive value and threshold detectability of lung tumors. Radiology 139, 25–29 (1981).

    PubMed  Google Scholar 

  22. N.A. Macmillan, C.D. Creelman: Detection theory: a user's guide. New York: Cambridge Univ. Press 1991.

    Google Scholar 

  23. T.F. Meaney, U. Raudkivi, W.J. McIntyre, J.H. Gallagher, J.R. Haaga, T.R. Havrilla, N.E. Reich: Detection of low-contrast lesions in computed body tomography: An experimental study of simulted lesions. Radiology 134, 149–154 (1980).

    PubMed  Google Scholar 

  24. C.E. Metz: Some practical issues of experimental design and data analysis in radiological ROC studies. Investigative Radiology 24, 234–245 (1989).

    PubMed  Google Scholar 

  25. C.E. Metz, P.L. Wang, H.B. Kronman: A new approach for testing the significance of differences between ROC curves measured from correlated data. In: F. Deconink (ed.), Information processing in medical imaging The Hague: Nijhoff, 1984, pp. 432–435.

    Google Scholar 

  26. C.E. Metz, S.J. Starr, L.B. Lusted, K. Rossmann: Progress in evaluation of human observer visual detection perfromance using the ROC curve approach. In: C Raynaud, A.E. Todd-Pokropek (eds.) Information Processing in scintigraphy Orsay, France: CEA, 1975, pp. 420–436.

    Google Scholar 

  27. C.R. Mitchel, J.A. Sorenson: Application of the Bunch transform in clinical FROC nodule detection studies. In W.W. Peppler, A. Alter (eds.) Proceedings of chest imaging conference '87 Madison, WI: Medical Physics Pub Co 1988, pp. 356–370.

    Google Scholar 

  28. B. Moulden, F. Kingdom: Effect of pixel width, display width, and number of alternative signal locations on the detection of a simple vertical-line signal in visual noise. Perception and Psychophysics 43, 592–598 (1988).

    PubMed  Google Scholar 

  29. L.T. Niklason, N.M. Hickey, D.P. Chakraborty, E. A. Sabbagh, M.Y. Yester, R.G. Fraser, G.T. Barnes: Simulated pulmonary nodules: Detection with dual-energy digital versus conventional radiology. Radiology 160, 589–594 (1986).

    PubMed  Google Scholar 

  30. J.C. Ogilvie, C.D. Creelman: Maximum-likelihood estimation of receiver operating characteristic curve parameters. Journal of Mathematical Psychology 5, 377–391 (1968).

    Article  Google Scholar 

  31. S.E. Seltzer, R.G. Swensson, R.D. Nawfel, J.F. Lentini, I. Kazda, P.F. Judy: Visualization and detection-localization on computed tomographic images. Investigative Radiology 26, 285–291 (1991).

    PubMed  Google Scholar 

  32. S.J. Starr, C.E. Metz, L.B. Lusted, D.J. Goodenough: Visual detection and localization of radiographic images. Radiology 116, 533–538 (1975).

    PubMed  Google Scholar 

  33. S.J. Starr, C.E. Metz, L.B. Lusted: Letter to the editor: Comments on the generalization of receiver operating characteristic analysis to detection and localization tasks. Physics in Medicine and Biology 22, 376–379 (1977).

    Article  PubMed  Google Scholar 

  34. R.G. Swensson: Observer performance tests in chest imaging. In W.W. Peppler, A. Alter (eds.) Proceedings of chest imaging conference '87 Madison, Wisc.: Medical Physics Pub Co., 1988, pp. 337–355.

    Google Scholar 

  35. R.G. Swensson, K.H. Chan: Detection and localization of simulated pulmonary nodules on chest films. Radiology 181(P), 278 (1991).

    Google Scholar 

  36. R.G. Swensson, P.F. Judy: Detction of noisy visual targets: models for the effects of spatial uncertainty and signal-to-noise ratio. Perception and Psychophysics 29, 521–534 (1981).

    PubMed  Google Scholar 

  37. R.G. Swensson, S.J. Hessel, P.G. Herman: Radiographic interpretation with and without search: visual search aids the recognition of chest pathology. Investigative Radiology 17, 145–151 (1982).

    PubMed  Google Scholar 

  38. R.G. Swensson, S.J. Hessel, P.G. Herman: The value of searching films without specific preconceptions. Investigative Radiology 20, 100–107 (1985).

    PubMed  Google Scholar 

  39. R.G. Swensson, S.J. Hessel, P.G. Herman: Different methods of analyzing radiographic interpretations do not alter the value of searching films (reply to editorial comments). Investigative Radiology 20, 111–114 (1985).

    Google Scholar 

  40. R.G. Swensson, G.H. Theodore: Search and nonsearch protocols for radiographic consultation. Radiology 177, 851–856 (1990).

    PubMed  Google Scholar 

  41. J.A. Swets: On the supposed value of searching films (editorial comment). Investigative Radiology 20, 108–109 (1985).

    Google Scholar 

  42. J.A. Swets: On searching films and begging the question (letter to the editor). Investigative Radiology 20, 115–116 (1985).

    PubMed  Google Scholar 

  43. J.A. Swets, R.M. Pickett: Evaluation of diagnostic systems: Methods from signal detection theory New York: Academic Press, 1982.

    Google Scholar 

  44. W.J. Tuddenham: Visual search, image organization, and reader error in roentgen diagnosis: Studies of the psychophysiology of roentgen image perception. Radiology 78, 694–704 (1962).

    PubMed  Google Scholar 

  45. R.F. Wagner: Decision theory and the detail signal-to-noise ratio of Otto Shade. Photographic Science and Engineering 22, 41–46 (1978).

    Google Scholar 

  46. R.F. Wagner, D.G. Brown: Unified SNR analysis of medical imaging systems. Physics in Medicine and Biology 30, 489–518 (1985).

    Article  Google Scholar 

  47. T.D. Wickins: Maximum-likelihood estimation of a multivariate gaussian rating model with excluded data. Journal of Mathematical Psychology 36, 213–234 (1992).

    Article  Google Scholar 

  48. A. Yoshimura, M.L. Giger, K. Doi, H. MacMahon, S.M. Montner: Computerized Scheme for the detection of pulmonary nodules: a nonlinear filtering technique. Investigative Radiology 27, 124–129 (1992).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Harrison H. Barrett A. F. Gmitro

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Swensson, R.G. (1993). Measuring detection and localization performance. In: Barrett, H.H., Gmitro, A.F. (eds) Information Processing in Medical Imaging. IPMI 1993. Lecture Notes in Computer Science, vol 687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0013809

Download citation

  • DOI: https://doi.org/10.1007/BFb0013809

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56800-1

  • Online ISBN: 978-3-540-47742-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics