Symbolic description of 3-D structures applied to cerebral vessel tree obtained from MR angiography volume data

  • G. Gerig
  • Th. Koller
  • G. Székely
  • Ch. Brechbühler
  • O. Kübler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 687)


The present paper focuses on the conversion of multidimensional image structures to an object-centered, abstract description encoding shape features and structure relationships. We describe a prototype system that extracts three-dimensional (3-D) curvilinear structures from volume image data and transforms them into a symbolic description which represents topological and geometrical features of tree-like, filamentous objects.

The initial segmentation is performed by 3-D hysteresis thresholding. A skeletal structure is derived by 3-D binary thinning, approximating the center-lines while fully preserving the 3-D topology. The local width of the line structures is characterized by a separate 3-D Euclidean distance transform. Compilation, or raster-to-vector transformation, converts the maximally thinned voxel lists into a vector description. The final graph data-structure encodes the spatial course of line sections, the estimate of the local diameter, and the topology at important key locations like branchings and end-points.

The analysis system is applied to the characterization of the cerebral vascular system segmented from magnetic resonance angiography (MRA).


Multidimensional image analysis 3-D binary thinning 3-D raster-tovector transform symbolic representation magnetic resonance angiography cerebrospinal vasculature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H-H. Ehricke and G. Laub. Combined 3D-display of cerebral vasculature and neuroanatomic structures in mri. In K.H. Höhne, H. Fuchs, and S.M. Pizer, editors, 3D Imaging in Medicine, pages 229–239, Berlin Heidelberg, June 1990. Springer-Verlag.Google Scholar
  2. [2]
    K.H. Höhne, M. Bomans, A. Pommert, M. Riemer, et al. Rendering tomographic volume data: Adequacy of methods for different modalities and organs. In K.H. öhne, H. Fuchs, and S.M. Pizer, editors, 3D Imaging in Medicine, pages 197–215, Berlin Heidelberg, 1990. Springer-Verlag.Google Scholar
  3. [3]
    D. Vandermeulen, D. Delaere, P. Suetens, H. Bosmans, and G. Marchal. Local filtering and global optimisation methods for 3d magnetic resonance angiography (mra). In Richard A. Robb, editor, Visualization in Biomedical Computing, pages 274–288. SPIE, October 1992.Google Scholar
  4. [4]
    Society of Magnetic Resonance in Medicine, SMRM. Proceedings of SMRM conference held at San Francisco, August 1991. abstracts 210, 757, 820, 1229.Google Scholar
  5. [5]
    H-H. Ehricke, L.R. Schad, G. Gademann, B. Wowra, etal. Use of MR angiography for stereotactic planning. Journal of Computer Assisted Tomography, 16(1):35–40, January 1992.PubMedGoogle Scholar
  6. [6]
    H.E. Cline et al. Vascular morphology by three-dimensional magnetic resonance imaging. Mag. Res. Im., Pergamon Press, 7:45–54, 1989.Google Scholar
  7. [7]
    D.N. Levin et al. The brain: integrated three-dimensional display of MR and PET images. Radiology, 17:783–789, 1989.Google Scholar
  8. [8]
    H. Blum. A transformation for extracting new descriptors of shape. In E. Dunn, W., editor, Models for the Perception of Speech and Visual Form, Cambridge, MA, 1967. M.I.T. Press.Google Scholar
  9. [9]
    J. Niggemann. Analysis and representation of neuroanatomical knowledge. Applied Artificial Intelligence, 4:309–336, 1990.Google Scholar
  10. [10]
    J.F. Canny. Finding edges and lines in images. Technical Report 720, MIT Artificial Intelligence Laboratory, Dept. of Electrical Engineering and Computer Science, Cambridge, MA, 1983.Google Scholar
  11. [11]
    J.F. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.Google Scholar
  12. [12]
    O. Monga et al. Recursive filtering and edge closing: two primary tools for 3D edge detection. In O. Faugeras, editor, Proc. First European Conference on Computer Vision — ECCV'90, pages 56–65, Berlin-Heidelberg, May 1990. Springer-Verlag.Google Scholar
  13. [13]
    C. Arcelli and B. Sanniti di Baja. A width-independent fast thinning algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7(4):463–474, 1985.Google Scholar
  14. [14]
    P.T. Speck. Übersetzung von Linien und Flächenstrukturen in kombinatorisch-relationale Datenstrukturen zur automatischen Mustererkennung in Digitalbildern. PhD thesis, ETH Zurich, 1984. Ph.D. thesis No. 7508.Google Scholar
  15. [15]
    P.E. Danielson. Euclidean distance mapping. Computer Graphics and Image Processing, 14:227–248, 1980.Google Scholar
  16. [16]
    L. Dorst. Pseudo-euclidean skeletons. In Proc. 8. ICPR, Paris, pages 286–288, 1986Google Scholar
  17. [17]
    D.G. Morgenthaler. Three-dimensional simple points: serial erosion, parallel thinning, and skeletonization. Technical Report TR-1005, Computer Vision Laboratory, University of Maryland, College Park, MD 20742, USA, February 1981.Google Scholar
  18. [18]
    T.Y. Kong and A. Rosenfeld. Digital topology: Introduction and survey. Computer Vision, Graphics, and Image Processing, 48:357–393, 1989.Google Scholar
  19. [19]
    S. Lobregt, P.W. Verbeek, and F.C.A. Groen. Three-dimensional skeletonization, principle and algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(1):75–77, January 1980.Google Scholar
  20. [20]
    Y.F. Tsao and K.S. Fu. A parallel thinning algorithm for 3-D pictures. Computer Graphics and Image Processing, 17:315–331, 1981.CrossRefGoogle Scholar
  21. [21]
    D.G. Morgenthaler. Three-dimensional digital topology: The genus. Technical Report TR-980, Computer Vision Laboratory, University of Maryland, College Park, MD 20742, USA, November 1980.Google Scholar
  22. [22]
    G. Malandain, G. Bertrand, and N. Ayache. Topological classification in digital space. In A.C.F. Colchester and D.J. Hawkes, editors, Information Processing in Medical Imaging, IPMI'91, pages 300–313, Berlin-Heidelberg, 1991. Springer-Verlag.Google Scholar
  23. [23]
    G. Bertrand and G. Malandain. A new topological classification of points in 3d images. In G. Sandini, editor, Computer Vision — ECCV'92, pages 710–714, Berlin Heidelberg, 1992. Springer-Verlag.Google Scholar
  24. [24]
    G.T. Herman and C.A. Bucholtz. Shape-based interpolation using a chamfer distance. In Proceedings of IPMI'91, Wye, pages 314–325. Springer-Verlag, 1991.Google Scholar
  25. [25]
    K.J. Zuiderveld, A.H. Konong, and M.A. Viergever. Acceleration of ray-casting using 3-d distance transforms. In Proceedings of VBC'92, Chapel Hill, pages 336–346. SPIE Conf. Ser. Vol. 1808, 1992.Google Scholar
  26. [26]
    H. Yamada. Complete euclidean distance transformation by parallel operation. In Proc. 7th ICPR, pages 69–71, 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • G. Gerig
    • 1
  • Th. Koller
    • 1
  • G. Székely
    • 1
  • Ch. Brechbühler
    • 1
  • O. Kübler
    • 1
  1. 1.Image Science, ETH-ZentrumCommunication Technology LaboratoryZurichSwitzerland

Personalised recommendations