A deliberative and reactive diagnosis agent based on logic programming

  • Michael Schroeder
  • Iara de Almeida Móra
  • Luis Moniz Pereira
Part V: Architectures
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1193)


In this article we formally specify and implement a diagnostic agent based on extended logic programming. Motivated by the application of decentralised diagnosis of distributed systems we develop an architecture for such agents that consists of a deliberative layer with a knowledge base, an inference machine and a reactive layer for communication and control. Throughout the layers we employ logic and logic programming to solve these tasks: the knowledge base uses extended logic programming to specify the agent's behaviour and its knowledge about the system to be diagnosed. The inference machine, which provides algorithms to compute diagnoses, as well as the reactive layer, that realises a meta interpreter for the agent behaviour, are implemented in PVM-Prolog, wich enhances standard Prolog with message passing facilities.


Model-based Diagnosis Multi Agent Systems Distributed Logic Programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. J. Alferes, C. V. Damásio, and L. M. Pereira. Top-down query evaluation for well-founded semantics with explicit negation. In A. Cohn, editor, Proc. of the European Conference on Artificial Intelligence'94, pages 140–144. John Wiley & Sons, August 1994.Google Scholar
  2. 2.
    J. J. Alferes, C. V. Damásio, and L. M. Pereira. A logic programming system for non-monotonic reasoning. Journal of Automated Reasoning, 14(1):93–147, 1995.CrossRefGoogle Scholar
  3. 3.
    D. Chu. I.C. PROLOG II: A language for implementing multi-agent systems. In S. M. Dean, editor, Proceedings of the 1992 Workshop on Cooperating Knowledge Based systems (CKBS92), pages 61–74. DAKE Centre, University of Keele, UK, 1993.Google Scholar
  4. 4.
    J. C. Cunha and R. F. P. Marques. Distributed algorithm development with PVM-Prolog. In 5th Euromicro Workshop on Parallel and Distributed Processing, London, UK, 1997. IEEE Computer Society Press.Google Scholar
  5. 5.
    C. V. Damásio, W. Nejdl, L. Pereira, and M. Schroeder. Model-based diagnosis preferences and strategies representation with meta logic programming. In Krzysztof R. Apt and Franco Turini, editors, Meta-logics and Logic Programming, chapter 11, pages 269–311. The MIT Press, 1995.Google Scholar
  6. 6.
    C. V. Damásio, W. Nejdl, and L. Moniz Pereira. REVISE: An extended logic programming system for revising knowledge bases. In J. Doyle, E. Sandewall, and P. Torasso, editors, Knowledge Representation and Reasoning, pages 607–618, Bonn, Germany, May 1994. Morgan Kaufmann.Google Scholar
  7. 7.
    P. Fröhlich, W. Nejdl, and M. Schroeder. Design and implementation of diagnostic strategy using modal logic. In JELIA96 — European workshop on Logic in AI. (LNAI 1126), Springer-Verlag, 1996.Google Scholar
  8. 8.
    A. Geist and et al. PVM: Parallel Virtual Machine. MIT Press, 1994.Google Scholar
  9. 9.
    A. Van Gelder, K. Ross, and J. S. Schlipf. Unfounded sets and well-founded semantics for general logic programs. In Proceeding of the 7th ACM Symposium on Principles of Databse Systems, pages 221–230. Austin, Texas, 1988.Google Scholar
  10. 10.
    F. F. Ingrand and M. P. Georgeff. Managing deliberation and reasoning in real-time ai systems. In Proceedings of the 1990 DARPA Workshop on Innovative Approaches to Planning, pages 284–291, San Diego, CA, 1990.Google Scholar
  11. 11.
    N. R. Jennings, J. M. Corera, I. Laresgoiti, E. H. Mamdani, F. Perriollat, P. Skarek, and L. Z. Varga. Using ARCHON to develop real-world DAI applications for electricity transportation management and particle accelerator control. IEEE Expert, 1996.Google Scholar
  12. 12.
    D. Kinny, M. Georgeff, J. Bailey, D. B. Kemp, and K. Ramamohanarao. Actice databases and agent systems — a comparison. In Proceedings of RIDS95, International Workshop of Rules in Database Systems, Athens, Greece, 1995.Google Scholar
  13. 13.
    R. A. Kowalski. Using meta-logic to reconcile reactive with rational agents. In Krzysztof R. Apt and Franco Turini, editors, Meta-logics and Logic Programming, chapter 9, pages 227–242. The MIT Press, 1995.Google Scholar
  14. 14.
    L. Lamport. The Bizantine generals problems. ACM Transactions on Programming and Systems, 4(3):382–401, 1982.CrossRefGoogle Scholar
  15. 15.
    J. Lee, M. J. Huber, E. H. Durfee, and P. G. Kenny. UM-PRS: An implementation of the procedural reasoning system for multirobot applications. In CIRFSS94, Conference on Intelligent Robotics in Field, Factory, Service and Space, pages 842–849. MIT Press, 1994.Google Scholar
  16. 16.
    D.R. McCarthy and U. Dayal. The architecture of an active database management system. In Proceedings of ACM SIGMOD-89, pages 215–224, 1989.Google Scholar
  17. 17.
    I. A. Móra and J. J. Alferes. Diagnosis of distributed systems using logic programming. In C. Pinto-Ferreira and N.J. Mamede, editors, Progress in Artificial Intelligence, 7th Portuguese Conference on Artificial Intelligence EPIA95, volume LNAI990, pages 409–428. Springer-Verlag, Funchal, Portugal, 1995.Google Scholar
  18. 18.
    W. Nejdl, P. Fröhlich, and M. Schroeder. A formal framework for representing diagnosis strategies in model-based diagnosis systems. In International Joint Conference on Artificial Intelligence, Montreal, August 1995.Google Scholar
  19. 19.
    L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs with explicit negation. In B. Neumann (Ed.), European Conference on Artificial Intelligence, pages 102–106. John Wiley & Sons, 1992.Google Scholar
  20. 20.
    L. M. Pereira, J. J. Alferes, and J. Apaŕcio. Contradiction Removal within Well Founded Semantics. In A. Nerode, W. Marek, and V. S. Subrahmanian, editors, Logic Programming and Nonmonotonic Reasoning, pages 105–119, Washington, USA, June 1991. MIT Press.Google Scholar
  21. 21.
    A. S. Rao. Agentspeak(l): BDI agents speak out in a logical computable language. In Proceedings of MAAMAW96, LNAI 1038. Springer-Verlag, 1996.Google Scholar
  22. 22.
    A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture. In J. Allen, R. Fikes, and E. Sandewall, editors, KR91, International Conference on Principlies of Knowledge Representation and Reasoning. Morgan Kaufmann Publishers, Inc., 1991.Google Scholar
  23. 23.
    A. S. Rao and M. P. Georgeff. A model-theoretic approach to the verification of situated reasoning systems. In Ruzena Bajcsy, editor, IJCAI93, International joint Conference on Artificial Intelligence, volume 1, pages 318–324. Morgan Kaufmann Publishers, Inc., 1993.Google Scholar
  24. 24.
    M. Schroeder, C. V. Damásio, and L. M. Pereira. Revise report: An architecture for a diagnosis agent. In Proceedings of the ECAI'96 Workshop on Integrating Nonmonotonicity into Automated Reasoning Systems, number 18–96, Universität Koblenz-Landau, Institut für Informatik, Rheinau 1, D-56075 Koblenz, 1996.Google Scholar
  25. 25.
    Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92, 1993.CrossRefGoogle Scholar
  26. 26.
    G. Wagner. A logical and operational model of scalable knowledge-and perception-based agents. In Proceedings of MAAMAW96, LNAI 1038. Springer-Verlag, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Michael Schroeder
    • 1
  • Iara de Almeida Móra
    • 2
  • Luis Moniz Pereira
    • 2
  1. 1.Institut für Wissensbasierte SystemUniversität HannoverHannoverGermany
  2. 2.Departamento de InformáticaUniversidade Nova de LisboaMonte de CaparicaPortugal

Personalised recommendations