Computation tree logic and regular ω-languages

  • Wolfgang Thomas
Technical Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 354)


The expressive power of branching time logics is studied in the framework of the theory of ω-automata and ω-languages. The systems CTL* (computation tree logic) and ECTL* (extended computation tree logic) are characterized in terms of star-free, resp. regular ω-languages. A further characterization of CTL* by a "non-counting property" for sets of trees shows that it is decidable whether an ECTL*-formula can be written as a CTL*-formula.

Key words

Branching time logic computation tree logic Büchi automata Rabin tree automata noncounting property group-free monoids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. [Arn85]
    A. Arnold, A syntactic congruence for rational ω-languages, Theor. Comput. Sci. 39 (1985), 333–335.CrossRefGoogle Scholar
  2. [Bü62]
    J.R. Büchi, On a decision method in restricted second order arithmetic, in: Logic, Methodology, and Philosophy of Science (E. Nagel et al., Eds.), Stanford Univ. Press 1962, pp. 1–11.Google Scholar
  3. [CGK87]
    E.M. Clarke, O. Grümberg, R.P. Kurshan, A synthesis of two approaches for verifying finite state concurrent systems, manuscript, Carnegie Mellon Univ., Pittsburgh 1987.Google Scholar
  4. [BCG71]
    J.A. Brzozowski, K. Culik II, A. Gabrielian, Classification of noncounting events, J. Comput. System Sci. 5 (1971), 41–53.Google Scholar
  5. [EH86]
    E.A. Emerson, J.Y. Halpern, "Sometimes" and "Not Never" revisited: On branching time versus linear time, J. Assoc. Comput. Mach. 33 (1986), 151–178.Google Scholar
  6. [Em88]
    E.A. Emerson, Temporal and modal logic, in: Handbook of Theoretical Computer Science (J. v. Leeuwen, Ed.), North-Holland, Amsterdam (to appear).Google Scholar
  7. [GPSS80]
    D. Gabbay, A. Pnueli, S. Shelah, J. Stavi, On the temporal analysis of fairness, in: 7th ACM Symp. on Principles of Programming Languages, Las Vegas, Nevada, 1980, 163–173.Google Scholar
  8. [Hi65]
    J. Hintikka, Distributive normal forms in first-order logic, in: "Formal Systems and Recursive Functions" (J.N. Crossley, M.A.E. Dummett, Eds.), pp. 47–90, North-Holland, Amsterdam 1965.Google Scholar
  9. [HT87]
    T. Hafer, W. Thomas, Computation tree logic CTL* and path quantifiers in the monadic theory of the binary tree, in: Proc. 14th ICALP, Karlsruhe (T. Ottmann, Ed.), LNCS 267 (1987), 269–279.Google Scholar
  10. [HR86]
    H.J. Hoogeboom, G. Rozenberg, Infinitary languages: Basic theory and applications to concurrent systems, in: Current Trends in Concurrency (J.W. de Bakker et alt., Eds.), LNCS 224 (1986), 266–342.Google Scholar
  11. [MNP71]
    R. McNaughton, S. Papert, Counter-Free Automata, MIT Press, Cambridge, Mass. 1971Google Scholar
  12. [Per84]
    D. Perrin, Recent results on automata and infinite words, in: Math. Found. of Comput. Sci. (M.P. Chytil, V. Koubek, Eds.), LNCS 176 (1984), 134–148.Google Scholar
  13. [Pn81]
    A. Pnueli, The temporal logic of concurrent programs, Theor. Comput. Sci. 13 (1981), 45–60.CrossRefGoogle Scholar
  14. [Pn86]
    A. Pnueli, Applications of temporal logic to the specification and verification of reactive systems: a survey of current trends, in: Current Trends in Concurrency (J.W. de Bakker et alt., Eds.), LNCS 224 (1986), 510–584.Google Scholar
  15. [Ra69]
    M.O. Rabin, Decidability of second-order theories and automata on infinite trees, Trans. Amer. Math. Soc. 141 (1969), 1–35.Google Scholar
  16. [Sch65]
    M.P. Schützenberger, On finite monoids having only trivial subgroups, Inform. Contr. 8 (1965), 190–194.CrossRefGoogle Scholar
  17. [Th79]
    W. Thomas, Star-free regular sets of ω-sequences, Inform. Contr. 42 (1979), 148–156.CrossRefGoogle Scholar
  18. [Th87]
    W. Thomas, On chain logic, path logic, and first-order logic over infinite trees, Proc. 2nd Symp. on Logic in Computer Sci., Ithaca, N.Y., 1987, 245–256.Google Scholar
  19. [Th88]
    W. Thomas, Automata on infinite objects (preliminary version), Aachener Informatik-Berichte 88/17, RWTH Aachen (to appear in: Handbook of Theoretical Computer Science, J.v. Leeuwen, Ed., North-Holland, Amsterdam).Google Scholar
  20. [VW84]
    M.Y. Vardi, P. Wolper, Yet another process logic, in: Logics of Programs (E. Clarke, D. Kozen, Eds.), LNCS 164 (1984), 501–512.Google Scholar
  21. [Wo83]
    P. Wolper, Temporal logic can be more expressive, Inform. Contr. 56 (1983), 72–99.CrossRefGoogle Scholar
  22. [WVS83]
    P. Wolper, M.Y. Vardi, A.P. Sistla, Reasoning about infinite computation paths, Proc. 24th Symp. on Found. of Comput. Sci., Tucson, Arizona, 1983, 185–194.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Wolfgang Thomas
    • 1
  1. 1.Lehrstuhl für Informatik II, RWTH AachenAachen

Personalised recommendations