The expressive power of branching time logics is studied in the framework of the theory of ω-automata and ω-languages. The systems CTL* (computation tree logic) and ECTL* (extended computation tree logic) are characterized in terms of star-free, resp. regular ω-languages. A further characterization of CTL* by a "non-counting property" for sets of trees shows that it is decidable whether an ECTL*-formula can be written as a CTL*-formula.

Key words

Branching time logic computation tree logic Büchi automata Rabin tree automata noncounting property group-free monoids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. [Arn85]
    A. Arnold, A syntactic congruence for rational ω-languages, Theor. Comput. Sci. 39 (1985), 333–335.CrossRefGoogle Scholar
  2. [Bü62]
    J.R. Büchi, On a decision method in restricted second order arithmetic, in: Logic, Methodology, and Philosophy of Science (E. Nagel et al., Eds.), Stanford Univ. Press 1962, pp. 1–11.Google Scholar
  3. [CGK87]
    E.M. Clarke, O. Grümberg, R.P. Kurshan, A synthesis of two approaches for verifying finite state concurrent systems, manuscript, Carnegie Mellon Univ., Pittsburgh 1987.Google Scholar
  4. [BCG71]
    J.A. Brzozowski, K. Culik II, A. Gabrielian, Classification of noncounting events, J. Comput. System Sci. 5 (1971), 41–53.Google Scholar
  5. [EH86]
    E.A. Emerson, J.Y. Halpern, "Sometimes" and "Not Never" revisited: On branching time versus linear time, J. Assoc. Comput. Mach. 33 (1986), 151–178.Google Scholar
  6. [Em88]
    E.A. Emerson, Temporal and modal logic, in: Handbook of Theoretical Computer Science (J. v. Leeuwen, Ed.), North-Holland, Amsterdam (to appear).Google Scholar
  7. [GPSS80]
    D. Gabbay, A. Pnueli, S. Shelah, J. Stavi, On the temporal analysis of fairness, in: 7th ACM Symp. on Principles of Programming Languages, Las Vegas, Nevada, 1980, 163–173.Google Scholar
  8. [Hi65]
    J. Hintikka, Distributive normal forms in first-order logic, in: "Formal Systems and Recursive Functions" (J.N. Crossley, M.A.E. Dummett, Eds.), pp. 47–90, North-Holland, Amsterdam 1965.Google Scholar
  9. [HT87]
    T. Hafer, W. Thomas, Computation tree logic CTL* and path quantifiers in the monadic theory of the binary tree, in: Proc. 14th ICALP, Karlsruhe (T. Ottmann, Ed.), LNCS 267 (1987), 269–279.Google Scholar
  10. [HR86]
    H.J. Hoogeboom, G. Rozenberg, Infinitary languages: Basic theory and applications to concurrent systems, in: Current Trends in Concurrency (J.W. de Bakker et alt., Eds.), LNCS 224 (1986), 266–342.Google Scholar
  11. [MNP71]
    R. McNaughton, S. Papert, Counter-Free Automata, MIT Press, Cambridge, Mass. 1971Google Scholar
  12. [Per84]
    D. Perrin, Recent results on automata and infinite words, in: Math. Found. of Comput. Sci. (M.P. Chytil, V. Koubek, Eds.), LNCS 176 (1984), 134–148.Google Scholar
  13. [Pn81]
    A. Pnueli, The temporal logic of concurrent programs, Theor. Comput. Sci. 13 (1981), 45–60.CrossRefGoogle Scholar
  14. [Pn86]
    A. Pnueli, Applications of temporal logic to the specification and verification of reactive systems: a survey of current trends, in: Current Trends in Concurrency (J.W. de Bakker et alt., Eds.), LNCS 224 (1986), 510–584.Google Scholar
  15. [Ra69]
    M.O. Rabin, Decidability of second-order theories and automata on infinite trees, Trans. Amer. Math. Soc. 141 (1969), 1–35.Google Scholar
  16. [Sch65]
    M.P. Schützenberger, On finite monoids having only trivial subgroups, Inform. Contr. 8 (1965), 190–194.CrossRefGoogle Scholar
  17. [Th79]
    W. Thomas, Star-free regular sets of ω-sequences, Inform. Contr. 42 (1979), 148–156.CrossRefGoogle Scholar
  18. [Th87]
    W. Thomas, On chain logic, path logic, and first-order logic over infinite trees, Proc. 2nd Symp. on Logic in Computer Sci., Ithaca, N.Y., 1987, 245–256.Google Scholar
  19. [Th88]
    W. Thomas, Automata on infinite objects (preliminary version), Aachener Informatik-Berichte 88/17, RWTH Aachen (to appear in: Handbook of Theoretical Computer Science, J.v. Leeuwen, Ed., North-Holland, Amsterdam).Google Scholar
  20. [VW84]
    M.Y. Vardi, P. Wolper, Yet another process logic, in: Logics of Programs (E. Clarke, D. Kozen, Eds.), LNCS 164 (1984), 501–512.Google Scholar
  21. [Wo83]
    P. Wolper, Temporal logic can be more expressive, Inform. Contr. 56 (1983), 72–99.CrossRefGoogle Scholar
  22. [WVS83]
    P. Wolper, M.Y. Vardi, A.P. Sistla, Reasoning about infinite computation paths, Proc. 24th Symp. on Found. of Comput. Sci., Tucson, Arizona, 1983, 185–194.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Wolfgang Thomas
    • 1
  1. 1.Lehrstuhl für Informatik II, RWTH AachenAachen

Personalised recommendations