Advertisement

Abstract

This paper starts with a survey of temporal logic in its original guise, pointing at its connections with philosophy and linguistics. More specifically, a technical exposition is provided of the basic ‘tense-logical’ system, based on points or ‘moments’ of time, with the research program in model theory and proof theory which has grown around it. After that, a more recent stream of ‘period’ and ‘event’ based approaches to time is discussed, again with some of the new logical themes engendered by it. Finally, a review is given of some recent computational research in temporal logic. Here, a clear continuity of logical concerns emerges between philosophy, linguistics and computer science. But, the latter adds several new themes and perspectives which might well give it a significant impact on the earlier standard enterprise.

Keywords

Completeness computational semantics correspondence event structure first-order definability period structure point structure temporal operator tense logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J., 1983, ‘Maintaining Knowledge about Temporal Intervals', Communications of the ACM 26, 832–843.CrossRefGoogle Scholar
  2. Allen, J. & P. Hayes, 1985, ‘A Commonsense Theory of Time', Proceedings IJCAI 1985, 528–531.Google Scholar
  3. Anger, F., 1986, On Lamport's Interprocessor Communication Model, Department of Mathematics, University of Puerto Rico, Rio Piedras.Google Scholar
  4. Apt, K., ed., 1985, Logics and Models of Concurrent Systems, Springer, Berlin.Google Scholar
  5. Bacon, J., 1985, ‘The Completeness of a Predicate-Functor Logic', Journal of Symbolic Logic 50, 903–926.Google Scholar
  6. Bartsch, R., J. van Benthem & P. van Emde Boas, eds., 1989, Meaning: Context and Expression, Foris, Dordrecht.Google Scholar
  7. Barwise, J., 1976, ‘Some Applications of Henkin Quantifiers', Israel Journal of Mathematics 25, 47–63.Google Scholar
  8. Bauerle, R., C. Schwarze & A. von Stechow, eds., 1979, Semantics from Different Points of View, Springer, Berlin.Google Scholar
  9. Ben-David, S., 1987, The Global Time Assumption and Semantics for Concurrent Systems, Department of Computer Science, Technion, Haifa.Google Scholar
  10. Benthem, J. van, 1977, ‘Tense Logic and Standard Logic', Logique et Analyse 80, 47–83.Google Scholar
  11. Benthem, J. van, 1979, ‘Canonical Modal Logics and Ultrafilter Extensions', Journal of Symbolic Logic 44, 1–8.Google Scholar
  12. Benthem, J. van, 1983, The Logic of Time, Reidel, Dordrecht.Google Scholar
  13. Benthem, J. van, 1984a, ‘Correspondence Theory', in D. Gabbay & F. Guenthner, eds., 1984, 167–247.Google Scholar
  14. Benthem, J. van, 1984b, ‘Tense Logic and Time', Notre Dame Journal of Formal Logic 25, 1–16.Google Scholar
  15. Benthem, J. van, 1985, Modal Logic and Classical Logic, Bibliopolis, Napoli/The Humanities Press, Atlantic Heights.Google Scholar
  16. Benthem, J. van, 1986a, Essays in Logical Semantics, Reidel, Dordrecht.Google Scholar
  17. Benthem, J. van, 1986b, Notes on Modal Definability, report 86-11, Mathematical Institute, University of Amsterdam. (To appear in the Notre Dame Journal of Formal Logic.)Google Scholar
  18. Benthem, J. van, 1986c, ‘Tenses in Real Time', Zeitschrift fuer mathematische Logik und Grundlagen der Mathematik 32, 61–72.Google Scholar
  19. Benthem, J. van, 1987, ‘Towards a Computational Semantics', in P. Gardenfors, ed., 1987, 31–71.Google Scholar
  20. Benthem, J. van, 1988a, A Manual of Intensional Logic, CSLI Lecture Notes 1, Center for the Study of Language and Information, Stanford University / The Chicago University Press, Chicago. (Second revised and expanded edition.)Google Scholar
  21. Benthem, J. van, 1988b, ‘Logical Syntax', to appear in Theoretical Linguistics.Google Scholar
  22. Benthem, J. van, 1988c, 'semantic Parallels in Natural Language and Computation', to appear in M. Garrido, ed., 1989.Google Scholar
  23. Blamey, S., 1986, ‘Partial Logic', in D. Gabbay & F. Guenthner, eds., 1986, 1–70.Google Scholar
  24. Blok, W., 1976, Varieties of Interior Algebras, dissertation, Mathematical Institute, University of Amsterdam.Google Scholar
  25. Blok, W., 1980, ‘The Lattice of Modal Logics: An Algebraic Investigation', Journal of Symbolic Logic 45, 221–236.Google Scholar
  26. Bull, R., 1966, ‘That all Normal Extensions of S4.3 Have the Finite Model Property', Zeitschrift fuer mathematische Logik und Grundlagen der Mathematik 12, 341–344.Google Scholar
  27. Burgess, J., 1980, ‘Decidability for Branching Time', Studia Logica 39, 203–218.CrossRefGoogle Scholar
  28. Burgess, J., 1982a, ‘Axioms for Tense logic I: "Since" and "Until"', Notre Dame Journal of Formal Logic 23, 367–374.Google Scholar
  29. Burgess, J., 1982b, ‘Axioms for Tense Logic II: Time Periods', Notre Dame Journal of Formal Logic 23, 375–383.Google Scholar
  30. Burgess, J., 1984a, ‘Basic Tense Logic', in D. Gabbay & F. Guenthner, eds., 1984, 89–133.Google Scholar
  31. Burgess, J., 1984b, ‘Beyond Tense Logic', Journal of Philosophical Logic 13, 235–248.CrossRefGoogle Scholar
  32. Burgess, J. & Y. Gurevich, 1985, ‘The Decision Problem for Linear Time Temporal Logic', Notre Dame Journal of Formal Logic 26, 115–128.Google Scholar
  33. Catach, L., 1988, Logiques Multimodales Normales, Centre Scientifique, IBM-France, Paris.Google Scholar
  34. Chang, C. & J. Keisler, 1973, Model Theory, North-Holland, Amsterdam.Google Scholar
  35. Chellas, B., 1980, Modal Logic: An Introduction, Cambridge University Press, Cambridge.Google Scholar
  36. Clarke, E. & E. Emerson, 1981, ‘Synthesis of Synchronization Skeletons for Branching Time Temporal Logic', Proceedings Workshop on Logic of Programs, Yorktown Heights NY, Springer, Berlin, 52–71.Google Scholar
  37. Creswell, M., 1977, ‘Interval Semantics and Logical Words', in Ch. Rohrer, ed., 1977, 7–29.Google Scholar
  38. Creswell, M., 1985, Adverbial Modification. Interval Semantics and its Rivals, Reidel, Dordrecht.Google Scholar
  39. Crossley, J., ed., 1975, Algebra and Logic, Springer, Berlin, (Lecture Notes in Mathematics 480).Google Scholar
  40. Davidson, D., 1967, ‘The Logical Form of Action Sentences', in N. Rescher, ed., 1967, 81–95.Google Scholar
  41. Doets, K., 1987, Completeness and Definability: Applications of the Ehrenfeucht Game in Intensional and Second-Order Logic, dissertation, Mathematical Institute, University of Amsterdam.Google Scholar
  42. Doets, K. & J. van Benthem, 1983, ‘Higher-Order Logic', in D. Gabbay & F. Guenthner, eds., 1983, 275–329.Google Scholar
  43. Dowty, D., 1979, Word Meaning and Montague Grammar, Reidel, Dordrecht.Google Scholar
  44. Earman, J., C. Glymour & J. Stachel, eds., 1977, Foundations of Space-Time Theories, University of Minnesota Press, Minneapolis.Google Scholar
  45. Eck, J. van, 1981, A System of Temporally Relative Modal and Deontic Predicate Logic, dissertation, Department of Philosophy, University of Groningen. (Also appeared in Logique et Analyse, 1983.)Google Scholar
  46. Emerson, E., 1988, ‘Branching Time Temporal Logics', this volume.Google Scholar
  47. Fagin, R. & M. Vardi, 1985, An Internal Semantics for Modal Logic, report 85-25, Center for the Study of Language and Information, Stanford University.Google Scholar
  48. Fenstad, J-E, P-K Halvorsen, T. Langholm, and J. van Benthem, 1987, Situations, Language and Logic, Reidel, Dordrecht.Google Scholar
  49. Field, H., 1980, Science Without Numbers, Princeton University Press, Princeton.Google Scholar
  50. Fine, K., 1974, ‘Logics Extending K4. Part I', Journal of Symbolic Logic 39, 31–42.Google Scholar
  51. Fine, K., 1975a, ‘Normal Forms in Modal Logic', Notre Dame Journal of Formal Logic 16, 229–234.Google Scholar
  52. Fine, K., 1975b, 'some Connections between elementary and Modal Logic', in S. Kanger, ed., 1975, 15–31.Google Scholar
  53. Fine, K., 1985, ‘Modal Logics Containing K4. Part II', Journal of Symbolic Logic 50, 619–651.Google Scholar
  54. Fitting, M., 1983, Proof Methods for Modal and Intuitionistic Logics, Reidel, Dordrecht.Google Scholar
  55. Gabbay, D., 1976, Investigations in Modal and Tense Logics, with Applications to Problems in Philosophy and Linguistics, Reidel, Dordrecht.Google Scholar
  56. Gabbay, D., 1981a, ‘An Irreflexivity Lemma', in U. Moennich, ed., 1981, 67–89.Google Scholar
  57. Gabbay, D., 1981b, ‘Expressive Functional Completeness in Tense Logic', in U. Moennich, ed., 1981, 91–117.Google Scholar
  58. Gabbay, D. & F. Guenthner, eds., 1983, Handbook of Philosophical Logic, vol. I: Elements of Classical Logic, Reidel, Dordrecht.Google Scholar
  59. Gabbay, D. & F. Guenthner, eds., 1984, Handbook of Philosophical Logic, vol. II: Extensions of Classical Logic, Reidel, Dordrecht.Google Scholar
  60. Gabbay, D. & F. Guenthner, eds., 1986, Handbook of Philosophical Logic, vol. III: Alternatives to Classical Logic, Reidel, Dordrecht.Google Scholar
  61. Gabbay, D., A. Pnueli, S. Shelah & Y. Stavi, 1980, ‘On the Temporal Analysis of Fairness', 7th ACM Symposium on Principles of Programming Languages, 163–173.Google Scholar
  62. Galton, A., 1984, The Logic of Aspect, Clarendon Press, Oxford.Google Scholar
  63. Gardenfors, P., ed., 1987, Generalized Quantifiers. Logical and Linguistic Approaches, Reidel, Dordrecht.Google Scholar
  64. Garrido, M., ed., Logic Colloquium. Granada 1987, North-Holland, Amsterdam.Google Scholar
  65. Gargov, G. & S. Passy, 1988, ‘A Note on Boolean Modal Logic', Linguistic Modelling Laboratory / Sector of Mathematical Logic, University of Sofia.Google Scholar
  66. Gargov, G., S. Passy & T. Tinchev, 1987, ‘Modal Environment for Boolean Speculations', in D. Skordev, ed., 1987, 253–263.Google Scholar
  67. Garson, J., 1984, ‘Quantification in Modal Logic', in D. Gabbay & F. Guenthner, eds., 1984, 249–307.Google Scholar
  68. Girard, J., 1987, ‘Linear Logic', Theoretical Computer Science 50, 1–102.CrossRefGoogle Scholar
  69. Goldblatt, R., 1976, ‘Metamathematics of Modal Logic', Reports on Mathematical Logic 6, 41–78; 7, 21–52.Google Scholar
  70. Goldblatt, R., 1980, ‘Diodorean Modality in Minkowski Space-Time', Studia Logica 39, 219–236.CrossRefGoogle Scholar
  71. Goldblatt, R., 1987a, Logics of Time and Computation, CSLI Lecture Notes 7, Center for the Study of Language and Information, Stanford University / The Chicago University Press, Chicago.Google Scholar
  72. Goldblatt, R., 1987b, Orthogonality and Space-Time Geometry, Springer, New York.Google Scholar
  73. Goldblatt, R. & S. Thomason, 1975, ‘Axiomatic Classes in Propositional Modal Logic', in J. Crossley, ed., 1975, 163–173.Google Scholar
  74. Goranko, V., 1987, ‘Modal Definability in Enriched Languages', to appear in Notre Dame Journal of Formal Logic.Google Scholar
  75. Groenendijk, J. & M. Stokhof, 1987, Dynamic Predicate Logic, Institute for Language, Logic and Information, University of Amsterdam. (To appear in the Journal of Semantics.)Google Scholar
  76. Gurevich, Y., 1985, Logic and the Challenge of Computer Science, report TR-10-85, Computing Research Laboratory, The University of Michigan, Ann Arbor.Google Scholar
  77. Gurevich, Y. & S. Shelah, 1985, ‘The Decision Problem for Branching Time Logic', Journal of Symbolic Logic 50, 668–681.Google Scholar
  78. Halpern, J. & Y. Moses, 1985, ‘Towards a Theory of Knowledge and Ignorance', in K. Apt, ed., 1985, 459–476.Google Scholar
  79. Halpern, J. & Y. Shoham, 1986, ‘A Propositional Modal Logic of Time Intervals', Proceedings Symposium on Logic in Computer Science, IEEE, Boston.Google Scholar
  80. Hamblin, C., 1971, ‘Instants and Intervals', Studium Generale 24, 127–134.PubMedGoogle Scholar
  81. Harel, D., 1984, ‘Dynamic Logic', in D. Gabbay & F. Guenthner, eds., 1984, 497–604.Google Scholar
  82. Harper, W., R. Stalnaker & G. Pearce, eds., 1981, Ifs: Conditionals, Beliefs, Decision, Chance and Time, Reidel, Dordrecht.Google Scholar
  83. Hayes, P., 1979, ‘The Naive Physics Manifesto', in D. Michie, ed., 1979.Google Scholar
  84. Henkin, L., 1950, ‘Completeness in the Theory of Types', Journal of Symbolic Logic 15, 81–91.Google Scholar
  85. Hindley, J. & J. Seldin, 1986, Introduction to Combinators and λ-Calculus, Cambridge University Press, Cambridge.Google Scholar
  86. Hintikka, J., ed., 1969, The Philosophy of Mathematics, Oxford University Press, Oxford.Google Scholar
  87. Hobbs, J., ed., 1985, Commonsense Summer. Final Report, report 85-35, Center for the Study of Language and Information, Stanford University.Google Scholar
  88. Hughes, G. & M. Creswell, 1984, A Companion to Modal Logic, Methuen, London.Google Scholar
  89. Humberstone, L., 1979, ‘Interval Semantics for Tense Logics', Journal of Philosophical Logic 8, 171–196.CrossRefGoogle Scholar
  90. Immerman, N., 1982, ‘Upper and Lower Bounds for First-Order Expressibility', Journal of Computer and Systems Sciences 25, 76–98.CrossRefGoogle Scholar
  91. Immerman, N. & D. Kozen, 1987, ‘Definability with Bounded Number of Bound Variables', Proceedings IEEE 1987, 236–244.Google Scholar
  92. Jongh, D. de & K. Bowen, 1986, Some Complete Logics for Branched Time. Part I, report 86-05, Institute for Language, Logic and Information, University of Amsterdam.Google Scholar
  93. Jongh, D. de, F. Veltman & R. Verbrugge, 1988, ‘The Logics of Dense and Discrete Time', Institute for Language, Logic and Information, University of Amsterdam.Google Scholar
  94. Jonsson, B. & A. Tarski, 1951, ‘Boolean Algebras with Operators. Part I', American Journal of Mathematics 73, 891–939.Google Scholar
  95. Kamp, H., 1966, Tense Logic and the Theory of Linear Order, dissertation, Department of Philosophy, University of California at Los Angeles.Google Scholar
  96. Kamp, H., 1979, ‘Instants, Events and Temporal Discourse', in R. Bauerle et al., eds., 1979, 376–417.Google Scholar
  97. Kamp, H. & Ch. Rohrer, 1988, Tense in Text, Institut fuer Computerlinguistik, Universitaet Stuttgart.Google Scholar
  98. Kanger, S., ed., 1975, Proceedings of the Third Scandinavian Logic Symposium. Uppsala 1973, North-Holland, Amsterdam.Google Scholar
  99. Kapron, B., 1987, ‘Modal Sequents and Definability', Journal of Symbolic Logic 52, 756–762.Google Scholar
  100. Katz., S., 1988, ‘Exploiting Interleaving Set Temporal Logic to Simplify Correctness Proofs', this volume.Google Scholar
  101. Keenan, E., ed., 1975, Formal Semantics of Natural Language, Cambridge University Press, Cambridge.Google Scholar
  102. Klop, J-W, 1988, ‘Bisimulation Semantics', this volume.Google Scholar
  103. Kowalski, R. & M. Sergot, 1985, A Logic-Based Calculus of Events, Department of Computing, Imperial College, London.Google Scholar
  104. Krantz, D., R. Luce, P. Suppes & A. Tversky, 1971, Foundations of Measurement, Academic Press, New York.Google Scholar
  105. Krifka, M., 1987, ‘Nominal Reference and Temporal Constitution: Towards a Semantics of Quantity', to appear in R. Bartsch et al., eds., 1988.Google Scholar
  106. Ladkin, P., 1987a, Models of Axioms for Time Intervals, The Kestrel Institute, Palo Alto.Google Scholar
  107. Ladkin, P., 1987b, The Logic of Time Representation, dissertation, Department of Mathematics, University of California at Berkeley.Google Scholar
  108. Ladkin, P. & R. Maddux, 1987, The Algebra of Convex Time Intervals, The Kestrel Institute, Palo Alto / Department of Mathematics, Iowa State University at Ames.Google Scholar
  109. Lambek, J., 1959, ‘The Mathematics of Sentence Structure', American Mathematical Monthly 65, 154–170.Google Scholar
  110. Lamport, L., 1985, Interprocessor Communication. Final Report, SRI International, Menlo Park.Google Scholar
  111. Langholm, T., 1988, Partiality, Truth and Persistence, CSLI Lecture Notes 15, Center for the Study of Language and Information, Stanford University / The Chicago University Press, Chicago.Google Scholar
  112. Lewis, D., 1975, ‘Adverbs of Quantification', in E. Keenan, ed., 1975, 3–15.Google Scholar
  113. Lifschitz, W., 1985, ‘Computing Circumscription', Proceedings IJCAI-85:1, 121–127.Google Scholar
  114. Massey, G., 1969, ‘Tense Logic! Why Bother?', Nous 3, 17–32.Google Scholar
  115. McCarthy, J., 1980, ‘Circumscription. A Form of Non-Monotonic Reasoning', Artificial Intelligence 13, 295–323.Google Scholar
  116. McDermott, D. & Y. Shoham, 1985, ‘Temporal Reasoning', to appear in S. Shapiro, ed., Encyclopedia of Artificial Intelligence, Wiley-Interscience, New York.Google Scholar
  117. McTaggart, J., 1908, ‘The Unreality of Time', Mind 18, 457–474.Google Scholar
  118. Michie, D., ed., 1979, Expert Systems, Edinburgh University Press, Edinburgh.Google Scholar
  119. Michon, J. & J. Jackson, eds., 1985, Time, Mind and Behavior, Springer, Berlin.Google Scholar
  120. Moennich, U., ed., 1981, Aspects of Philosophical Logic, Reidel, Dordrecht.Google Scholar
  121. Needham, P., 1975, Temporal Perspective, dissertation, Department of Philosophy, University of Uppsala.Google Scholar
  122. Oberlander, J., ed., 1987, Temporal Reference and Quantification: An IQ Perspective, Centre for Cognitive Science, University of Edinburgh.Google Scholar
  123. Pnueli, A., 1981, ‘The Temporal Semantics of Concurrent Programs', Theoretical Computer Science 13, 45–60.CrossRefGoogle Scholar
  124. Pnueli, A., 1988, ‘Linear Time Temporal Logic', this volume.Google Scholar
  125. Prior, A., 1957, Time and Modality, Clarendon Press, Oxford.Google Scholar
  126. Prior, A., 1967, Past, Present and Future, Clarendon Press, Oxford.Google Scholar
  127. Quine, W., 1966, ‘Variables Explained Away', in Selected Logic Papers, Random House, New York.Google Scholar
  128. Reichenbach, H., 1947, Elements of Symbolic Logic, The Free Press, New York.Google Scholar
  129. Reichenbach, H., 1957, The Philosophy of Space and Time, Dover, New York.Google Scholar
  130. Rescher, N., ed., 1967, The Logic of Decision and Action, University of Pittsburgh Press, Pittsburgh.Google Scholar
  131. Rescher, N. & A. Urquhart, 1971, Temporal Logic, Springer, Berlin.Google Scholar
  132. Richards, B. & I. Bethke, 1987, ‘The Temporal Logic IQ', in J. Oberlander, ed., 1987, 114–132.Google Scholar
  133. Rodenburg, P., 1986, Intuitionistic Correspondence Theory, dissertation, Mathematical Institute, University of Amsterdam.Google Scholar
  134. Roeper, P., 1980, ‘Intervals and Tenses', Journal of Philosophical Logic 9, 451–469.Google Scholar
  135. Rohrer, Ch., ed., 1977, On the Logical Analysis of Tense and Aspect, Gunter Narr Verlag, Tuebingen.Google Scholar
  136. Russell, B., 1926, Our Knowledge of the External World, Allen & Unwin, London.Google Scholar
  137. Sahlqvist, H., 1975, ‘Completeness and Correspondence in the First and Second Order Semantics for Modal Logic', in S. Kanger, ed., 1975, 110–143.Google Scholar
  138. Sambin, G. & V. Vaccaro, 1987, ‘Topology and Duality in Modal Logic', to appear in Annals of Pure and Applied Logic.Google Scholar
  139. Schulz, K., 1987, Event and Interval Structures: A Mathematical Comparison, Seminar fuer Natuerlich-Sprachliche Systeme, Universitaet Tuebingen.Google Scholar
  140. Segerberg, K., 1970, ‘Modal Logics with Linear Alternative Relations', Theoria 31, 301–322.Google Scholar
  141. Segerberg, K., 1973, ‘Two-Dimensional Modal Logic', Journal of Philosophical Logic 2, 77–96.CrossRefGoogle Scholar
  142. Shehtman, V., 1983, ‘Modal Logics of Domains on the Real Plane', Studia Logica 42, 63–80.CrossRefGoogle Scholar
  143. Shoham, Y., 1986, Reasoning about Change: Time and Causation from the Standpoint of Artificial Intelligence, The MIT Press, Cambridge (Mass.).Google Scholar
  144. Skordev, D., ed., 1987, Mathematical Logic and its Applications, Plenum Press, New York.Google Scholar
  145. Smart, J., ed., 1964, Problems of Space and Time, McMillan, New York & London.Google Scholar
  146. Smirnov, V., 1982, ‘The Definition of Modal Operators by means of Tense Operators', Acta Philosophica Fennica 35, 50–69.Google Scholar
  147. Smith, B., ed., 1982, Parts and Moments. Studies in Logic and Formal Ontology, Philosophia Verlag, Muenchen.Google Scholar
  148. Smorynski, C., 1984, ‘Modal Logic and Self-Reference', in D. Gabbay & F. Guenthner, eds., 1984, 441–495.Google Scholar
  149. Stirling, C., 1988, Expressibility and Definability in Branching and Linear Time Temporal Logics, Department of Computer Science, University of Edinburgh.Google Scholar
  150. Tarski, A., 1969, ‘What is Elementary Geometry?', in J. Hintikka, ed., 1969, 164–175.Google Scholar
  151. Thomas, W., 1986, Safety and Liveness Properties in Propositional Temporal Logic: Characterizations and Decidability, Lehrstuhl fuer Informatik II, Universitaet Aachen.Google Scholar
  152. Thomas, W., 1988, ‘Computation-Free Logic and Regular ω-Languages', this volume.Google Scholar
  153. Thomason, R., 1984, ‘Combinations of Tense and Modality', in D. Gabbay & F. Guenthner, eds., 1984, 135–165.Google Scholar
  154. Thomason, R. & A. Gupta, 1981, ‘A Theory of Conditionals in the Context of Branching Time', in W. Harper et al., eds., 1981, 299–322.Google Scholar
  155. Thomason, S., 1972, ‘Semantic Analysis of Tense Logics', Journal of Symbolic Logic 37, 150–158.Google Scholar
  156. Thomason, S., 1974, ‘Reduction of Tense Logic to Modal Logic', Journal of Symbolic Logic 39, 549–551.Google Scholar
  157. Thomason, S., 1975, ‘Reduction of Second-Order Logic to Modal Logic', Zeitschrift fuer mathematische Logik und Grundlagen der Mathematik 21, 107–114.Google Scholar
  158. Thomason, S., 1979, Possible Worlds, Time and Tenure, Department of Mathematics, Simon Fraser University, Burnaby B. C.Google Scholar
  159. Thomason, S., 1982, ‘Undecidability of the Completeness Problem of Modal Logic', Universal Algebra and Applications, Banach Center Publications vol. 9, Warsaw.Google Scholar
  160. Thomason, S., 1987, Free Construction of Time from Events, Department of Mathematics, Simon Fraser University, Burnaby B. C.Google Scholar
  161. Troelstra, A. & D. van Dalen, 1988, Constructivism in Mathematics, North-Holland, Amsterdam.Google Scholar
  162. Urquhart, A., 1986, ‘Many-Valued Logic', in D. Gabbay & F. Guenthner, eds., 1986, 71–116.Google Scholar
  163. Vardi, M., 1985, ‘A Model-theoretic Analysis of Monotone Logic', Proceedings 9th IJCAI, 509–512.Google Scholar
  164. Venema, Y., 1988, Expressiveness and Completeness of an Interval Tense Logic, report 88-02, Institute for Language, Logic and Information, University of Amsterdam. (Extended version to appear.)Google Scholar
  165. Whitrow, G., 1980, The Natural Philosophy of Time, Clarendon Press, Oxford.Google Scholar
  166. Winnie, J., 1977, ‘The Causal Theory of Space-Time', in J. Earman et al., eds., 1977, 134–205.Google Scholar
  167. Winskel, G., 1988, ‘Event Structures', this volume.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Johan van Benthem
    • 1
  1. 1.Faculty of Mathematics and Computer ScienceUniversity of AmsterdamAmsterdamHolland

Personalised recommendations