A new approach to universal unfication and its application to AC-unification

  • Mark Franzen
  • Lawrence J. Henschen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 310)


A complete unification algorithm for simple theories is described. This algorithm is an extension of the variable abstraction approach. Since the associative-commutative (AC) theory is simple, an immediate consequence of this algorithm is a new AC-unification procedure. A partial correctness proof is given and some preliminary termination results for the AC case are presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burris, S., Sankappanavar, H.P. (1981). A Course in Universal Algebra, Springer-Verlag.Google Scholar
  2. Bürckert, H.-J., Herold, A., and Schmidt-Schauß, M. (1987). On Equational Theories, Unification and Decidability, Proc. of RTA'87, Pierre Lescanne, ed., Springer-Verlag, LNCS 256, 204–215.Google Scholar
  3. Fages, F. and Huet, G. (1983). Unification and Matching in Equational Theories, Proc. of CAAP'83, Springer-Verlag, LNCS 159, 205–220.Google Scholar
  4. Fay, M. (1979). First Order Unification in an Equational Theory, Proc. of 4th Workshop on Automated Deduction, 161–167.Google Scholar
  5. Franzen, M. (1988). A Unification Algorithm for Simple Equational Theories, Doctoral Thesis, Northwestern University, forthcoming.Google Scholar
  6. Gallier, J.H. and Snyder, W. (1987). A Genereal Complete E-Unification Procedure, Proc. of RTA'87, Pierre Lescanne, ed., Springer-Verlag, LNCS 256, 216–227.Google Scholar
  7. Herold, A. (1982). Universal Unification and a Class of Equational Theories, Proc. of GWAI-82 (ed. W. Wahlster), Springer-Verlag, IFB-82, 177–190.Google Scholar
  8. Herold, A. (1985). A Combination of Unification Algorithms, in Proc. of 8th CADE, Springer-Verlag, LNCS 230, 450–469.Google Scholar
  9. Huet, G., Oppen, D.C. (1980). Equations and Rewrite Rules: A Survey, in Formal Languages: Perspectives and Open Problems, R. Book, ed., Academic Press, 349–405.Google Scholar
  10. Hullot, J.M. (1980). Canonical Forms and Unification, Proc. of 5th CADE, Springer-Verlag, LNCS 87, 318–334.Google Scholar
  11. Kirchner, C. (1985). Méthodes et outils de conception systématique d'algorithmes d'unification dans les théories equationelles, Thèse de doctorat d'état, Université de Nancy I.Google Scholar
  12. Kirchner, C. (1986). Computing Unification Algorithms, 1st IEEE Symposium on Logic in Computer Science, Cambridge, Massachusetts, June 1986, 206–216.Google Scholar
  13. Livesey, M., Siekmann, J. (1976). Unification of A + C Terms (Bags) and A + C + I Terms (Sets), Technical Report Interner Bericht Nr. 3/76, Institut für Informatik I, Universität Karlsruhe.Google Scholar
  14. Martelli, A., Moiso, C., Rossi, G.F. (1986). An Algorithm for Unification in Equational Theories, Proc. 1986 Symposium on Logic Programming, Salt Lake City, 180–186.Google Scholar
  15. Martelli, A., Montanari, U. (1982). An Efficient Unification Algorithm, ACM TOPLAS, Vol. 4, No. 2, 258–282.CrossRefGoogle Scholar
  16. Siekmann, J., Szabo, P. (1981). Universal Unification and Regular ACFM Theories, Proc. of IJCAI-81, Vancouver.Google Scholar
  17. Siekmann, J. (1984). Universal Unification, Proc. of 7th CADE, Springer-Verlag, LNCS 170, 1–42.Google Scholar
  18. Siekmann, J. (1986). Unification Theory, Proc. of ECAI'86, Vol. II, vi-xxxv.Google Scholar
  19. Stickel, M.E. (1981). A Unification Algorithm for Associative-Commutative Functions, JACM, vol. 28, 423–434.CrossRefGoogle Scholar
  20. Tiden, E. (1986). Unification in Combinations of Collapse-Free Theories with Disjoint Sets of Function Symbols, Proc. of 8th CADE, Springer-Verlag, LNCS 230, 431–449.Google Scholar
  21. Yelick, K. (1985). Combining Unification Algorithms for Confined Regular Equational Theories, Proc. of RTA'85, Springer-Verlag, LNCS 202, 365–380.Google Scholar
  22. Yelick, K. (1987). Unification in Combinations of Collapse-Free Regular Theories, J. Symbolic Computation, vol. 3, 153–181.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Mark Franzen
    • 1
  • Lawrence J. Henschen
    • 2
  1. 1.Department of MathematicsNorthwestern UniversityUSA
  2. 2.Department of Computer ScienceNorthwestern UniversityUSA

Personalised recommendations