Linear modal deductions

  • Luis Fariñas del Cerro
  • Andreas Herzig
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 310)


We present a deduction method for propositional modal logics. It is based on a resolution principle for formulas written in a very simple normal form, close to the clausal form for classical logic. It allows us to extend naturally resolution and refinements of resolution to modal logics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5 References

  1. [1]
    Abadi M., Manna Z. Modal theorem proving. 8CAD, LNCS, Springer-Verlag 1986, pp 172–186.Google Scholar
  2. [2]
    Auffray Y., Enjalbert P., Hebrard J.J., Strategics for modal resolution: results and problems. Rapport du Laboratoire d'Informatique de Caen, 1987.Google Scholar
  3. [3]
    Balbiani Ph., Fariñas del Cerro L., Herzig A., Declarative semantics for modal logic programs. Rapport LSI, November 1987.Google Scholar
  4. [4]
    Bieber P., Cooperating with untrusted agents. Rapport LSI, UPS, 1988.Google Scholar
  5. [5]
    Cialdea M., Une méthode de déduction automatique en logique modale. Thèse Université Paul Sabatier, Toulouse, 1986.Google Scholar
  6. [6]
    Enjalbert P., Fariñas del Cerro L., Modal resolution in clausal form, Theoretical Computer Sciences, to appear.Google Scholar
  7. [7]
    Fariñas del Cerro L., A simple deduction method for modal logic. Information Processing Letter 14, 1982.Google Scholar
  8. [8]
    Fariñas del Cerro L., Herzig A., Quantified modal logic and unification theory. Rapport LSI, UPS, 1988.Google Scholar
  9. [9]
    Fariñas del Cerro L., Orlowska. E., Automated reasoning in non classical logic. Logique et Analyse, no 110–111, 1985.Google Scholar
  10. [10]
    Fitting M.C., Proof methods for modal and intuitionistic logics. Methuen & Co., London 1986.Google Scholar
  11. [11]
    Hughes G.E., Cresswell M.J., A companion to Modal Logic, Methuen & Co. Ltd., London 1986.Google Scholar
  12. [12]
    Konolige K., Resolution and quantified epistemic logics. 8CAD, LNCS, Springer-Verlag 1986, pp199–209.Google Scholar
  13. [13]
    Konolige K., A deductive model of belief and its logics. Ph.D. Thesis, Computer Sciences Department, Stanford University 1984.Google Scholar
  14. [14]
    Mints G., Resolution calculi for modal logics. Proc. of the Academy of Estonian SSR, 1986 (in russian).Google Scholar
  15. [15]
    Ohlbach H.J., A resolution calculus for modal logics. Report University of Kaiserslautern, 1987.Google Scholar
  16. [16]
    Wallen L.A., Matrix proof methods for modal logics. In Proc. of 10th ICALP, 1987.Google Scholar
  17. [17]
    Wrightson, G., Non-classical theorem proving. Journal of automated Reasoning, 1,35–37, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Luis Fariñas del Cerro
    • 1
  • Andreas Herzig
    • 1
  1. 1.Langages et Systèmes InformatiquesUniversité Paul SabatierToulouse Cédex

Personalised recommendations