Advertisement

Partial unification for graph based equational reasoning

  • Karl Hans Bläsius
  • Jörg H. Siekmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 310)

Abstract

The problems of mechanizing equational reasoning are discussed and two prominent approaches (E-resolution and RUE-resolution) that build equality into a resolution based calculus are evaluated. Their relative strengths and weaknesses are taken as a motivation for our own approach, whose evolution is described.

The essential idea in our equational reasoning method is to store the information about partially unified terms in a graphlike structure. This explicit representation supports a goaldirected planning approach at various levels of abstraction.

Keywords

Unification built-in equality clause graphs with equality planning in abstraction spaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. And 70.
    R. Anderson: Completeness results for E-resolution, Proc. Spring Joint Conf., 653–656, 1970Google Scholar
  2. BES 81.
    K.H. Bläsius, N. Eisinger, J. Siekmann, G. Smolka, A. Herold, C. Walther: The Markgraf Karl Refutation Procedure, Proc. IJCAI, 511–518, 1981Google Scholar
  3. Blä 83.
    K.H. Bläsius: Equality Reasoning in Clause Graphs, Proc. IJCAI, 936–939, 1983Google Scholar
  4. Blä 86.
    K.H. Bläsius: Against the ‘Anti Waltz Effect’ in Equality Reasoning, Proc. German Workshop on Artificial Intelligence, Informatik-Fachberichte 124, Springer, 230–241, 1986Google Scholar
  5. Blä 87.
    K.H. Bläsius: Equality Reasoning Based on Graphs, SEKI-REPORT SR-87-01 (Ph.D. thesis), Fachbereich Informatik, Universität Kaiserslautern, 1987Google Scholar
  6. BM 72.
    R.S. Boyer, J.S. Moore: The Sharing of Structure in Theorem-proving Programs, Machine Intelligence 7, Edinburgh University Press, 101–116, 1972Google Scholar
  7. Bra 75.
    D. Brand: Proving Theorems with the Modification Method, SIAM Journal of Comp., vol 4, No. 4, 1975Google Scholar
  8. Buc 87.
    B. Buchberger: History and Basic Features of the Critical-Pair/Completion Procedure, Journal of Symbolic Computation, Vol. 3, Nos 1 & 2, 3–38, 1987Google Scholar
  9. Bür 86.
    H.-J. Bürckert: Lazy Theory Unification in Prolog: An Extension of the Warren Abstract Machine, Proc. GWAI-86, IFB 124, Springer Verlag, 277–289, 1986Google Scholar
  10. Dig 79.
    V.J. Digricoli: Resolution by Unification and Equality, Proc. 4th Workshop on Automated Deduction, Texas, 1979Google Scholar
  11. Dig 85.
    V.J. Digricoli: The Management of Heuristic Search in Boolean Experiments with RUE-resolution, Proc. IJCAI-85, Los Angeles, 1985Google Scholar
  12. HO 80.
    G. Huet, D. Oppen: Equations and Rewrite Rules: A survey, Technical Report CSL-111, SRI International, 1980Google Scholar
  13. Kow 75.
    R. Kowalski: A Proof Procedure Using Connection Graphs, JACM 22, 4, 1975CrossRefGoogle Scholar
  14. Kir 87.
    C. Kirchner: Methods and Tools for Equational Unification, Proc. of Colloq. on Equations in Algebraic Structures, Lakeway, Texas, 1987Google Scholar
  15. LH 85.
    Y. Lim, L.J. Henschen: A New Hyperparamodulation Strategy for the Equality Relation, Proc. IJCAI-85, Los Angeles, 1985Google Scholar
  16. LO 80.
    E.L. Lusk, R.A. Overbeek: Data Structures and Control Architecture for Implementation of Theorem-Proving Programs, Proc. 5th CADE, Springer Lecture Notes, vol. 87, 232–249, 1980Google Scholar
  17. Mor 69.
    J.B. Morris: E-resolution: An Extension of Resolution to include the Equality Relation, Proc. IJCAI, 1969, 287–294Google Scholar
  18. NRS 87.
    W. Nutt, P. Rety, G. Smolka: Basic Narrowing Revisted, SEKI-Report SR-87-7, Univ. of Kaiserslautern, 1987; to appear in J. of Symbolic Computation, 1988Google Scholar
  19. NSS 59.
    A. Newell, J.C. Shaw, H. Simon: Report on a General Problem Solving Program, Proc. Int. Conf. Information Processing (UNESCO). Paris, 1959Google Scholar
  20. Pla 81.
    D. Plaisted: Theorem Proving with Abstraction, Artifical Intelligence 16, 47–108, 1981CrossRefGoogle Scholar
  21. Prä 87.
    A. Präcklein: Equality Reasoning, Internal Working Paper, Univ. of Kaiserslautern, 1987Google Scholar
  22. Ric 78.
    M. Richter: Logik Kalküle, Teubner Verlag, 1978Google Scholar
  23. Rob 65.
    J.A. Robinson: A Machine-Oriented Logic Based on the Resolution Principle, JACM 12, 1965Google Scholar
  24. Rus 87.
    M. Rusinowitch: Démonstration Automatique par des Techniques de Réécriture, Thèse d'état, CRIN, Centre de Recherche en Informatique de Nancy, 1987Google Scholar
  25. RW 69.
    G. Robinson, L. Wos: Paramodulation and TP in first order theories with equality, Machine Intelligence 4, 135–150, 1969Google Scholar
  26. Sho 78.
    R.E. Shostak: An Algorithm for Reasoning About Equality, CACM, vol 21, no. 7, 1978Google Scholar
  27. Sib 69.
    E.E. Sibert: A machine-oriented Logic incorporating the Equality Axiom, Machine Intelligence, vol 4, 103–133, 1969Google Scholar
  28. Sie 86.
    J. Siekmann: Unification Theory, Proc. of European Conf. on Artificial Intelligence (ECAI), 1986 full paper to appear in J. of Symbolic Computation, 1988Google Scholar
  29. SNGM 87.
    G. Smolka, W. Nutt, J. Goguen, J. Meseguer: Order-sorted equational computation, in M. Nivat, H. Ait-Kaci (eds): Resolving Equational Systems, Addison-Wesley, to appear 1988Google Scholar
  30. Sti 85.
    M. Stickel: Automated Deduction by Theory Resolution, Journal of Automated Reasoning Vol. 1, No. 4 (1985), 333–356CrossRefGoogle Scholar
  31. SW 80.
    J. Siekmann, G. Wrightson: Paramodulated Connectiongraphs, Acta Informatica 13, 67–86, 1980CrossRefGoogle Scholar
  32. Tar 68.
    A. Tarski: Equational Logic and Equational Theories of Algebra, in: Schmidt et.al. (eds): Contribution to Mathematical Logic, North Holland, 1986Google Scholar
  33. Tay 79.
    W. Taylor: Equational Logic, Houston Journal of Maths, 5, 1979Google Scholar
  34. War 83.
    D.H.D. Warren: An Abstract Prolog Instruction Set, SRI Technical Note 309, Sri International, October 1983Google Scholar
  35. WOLB 84.
    L. Wos, R. Overbeek, E. Lusk, J. Boyle: Automated Reasoning, Introduction and Applications, Prentice Hall, 1984Google Scholar
  36. WRCS 67.
    L. Wos, G. Robinson, D. Carson, L. Shalla: The Concept of Demodulation in Theorem Proving, J. ACM 14, 698–709, 1967CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Karl Hans Bläsius
    • 1
  • Jörg H. Siekmann
    • 2
  1. 1.IBM Deutschland GmbH WT LILOGStuttgart 80West Germany
  2. 2.University of Kaiserslautern FB InformatikKaiserslauternWest Germany

Personalised recommendations