The power of non-rectilinear holes

  • Andrzej Lingas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 140)


Four multiconnectcd-polygon partition problems are shown to be NP-hard.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [C]
    Chazelle,B., Computational Geometry and Convexity, PhD thesis, Yale University, 1980.Google Scholar
  2. [C1]
    Chazelle,P, Convex Decompositions of Polyhedra, Proceedings of the 13th ACM SIGACT Symposium, Milwaukee, Wisconsin, May, 1981.Google Scholar
  3. [CD]
    Chazelle, B. and D. Dobkin, Decomposing polygon into its convex parts, Proceedings of the 11th ACM SIGACT Symposium, New York, 1979.Google Scholar
  4. [GJPT]
    Garey M.R., Johnson D.S., Preparata F.P., Tarjan R.E., Triangulating a simple polygon, Information Processing Letters, Vol. 7, No. 4, 1978.Google Scholar
  5. [L]
    Lichtenstein,D., Planar Formulae and their Uses, to appear.Google Scholar
  6. [LPRS]
    Lingas A., R.Pinter, R.Rivest and A.Shamir, Minimum Edge Length Decompositions of Rectilinear Figures, unpublished manuscript, MIT, 1981.Google Scholar
  7. [M]
    Masek W., Some NP-complete set covering problems, unpublished manuscript, MIT, 1979.Google Scholar
  8. [OS]
    O'Rourke J., K.Supowit, Some NP-hard polygon decomposition problems, submitted for publication.Google Scholar
  9. [PLLML]
    Pagli,L., E.Lodi, F.Luccio, C.Mugnai and W.Lipski, On two dimensional data organization 2, Fundamenta Informaticae, Vol. 2, No.3, 1979.Google Scholar
  10. [P]
    Pinter R., private communication, 1981.Google Scholar
  11. [SH]
    Shamos, I. and D. Hoey, Geometric intersection problems, Proceedings of the 17th IEEE FOCS Symposium, 1976.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • Andrzej Lingas
    • 1
  1. 1.Laboratory for Computer ScienceMITUSA

Personalised recommendations