Earth tides and ocean tidal loading

  • Gerhard Jentzsch
Ocean Tides And Related Phenomena
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 66)

Abstract

The tidal deformation of the solid earth is superimposed by the loading effect caused by the ocean tides. There are two contributions: the attraction of the moving water masses and the deformation of the crust due to the water load. Thus, the elasticity of the local crust-mantle structure controls the response. The distribution of the continents and the topography of the ocean bottom avoid a uniform response of the ocean to the tidal forces. Therefore, the tidal loading signal is generally not in phase with the body tides.

The different transfer functions for gravity, tilt, and strain result in different loading effects as well: The loading signal in gravity is close to the ocean mostly smaller than the body tide, but it can still be observed at great distances from the oceans. On the other hand, in tilt and strain the loading signal may surmount the body tide close to the coast, but it vanishes below the noise level far from the coast. Therefore, tidal gravity provides an independent tool to constrain ocean tidal models, whereas tidal tilt and strain can be used to determine local crustal structures.

The vertical displacement due to ocean tidal loading may reach values of more than a decimeter close to the coasts, and it must be taken into account for high precision earth monitoring. Models for the correction of the body tides exist, but since there is still no global ocean tidal model available that also fits all the shelf tides further gravity measurements are needed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnew, D.C. 1983. Conservation of mass in tidal loading computations. Geophys. J. R. astr. Soc. 72: 321–325.Google Scholar
  2. Agnew, D. C. 1995. Ocean-load tides at the South Pole: A validation of recent ocean-tide models. Geophys. Res. Lett.. 22: 3063–3066.Google Scholar
  3. Andersen, O.B. 1994. Global ocean tides from ERS-1 and TOPEX/ POSEIDON altimetry. J. geophys. Res. TOPEX/POSEIDON special issue 2 (in press).Google Scholar
  4. Asch, G., T. Jahr, G. Jentzsch, A. Kiviniemi, J. Kääriäinen, H.-P. Plag and W. Thiel 1986. Loading tides along the ‚Blue Road Geotraverse'. In: Proc. 10th Int. Symp. Earth Tides. pp. 707–717. R. Vieira (ed.). Consejo Sup. Invest. Cient., Madrid.Google Scholar
  5. Asch, G., T. Jahr, G. Jentzsch, A. Kiviniemi and J. Kääriäinen. 1987. Measurement of gravity tides along the ‚Blue Road Geotraverse’ in Fennoscandia. Publ. Finnish Geodetic Inst. 107: 1–57.Google Scholar
  6. Baker, T.F. 1978. What can earth tide measurements tell us about ocean tides or earth structure? In: Proc. 9th GEOP Conf. Dept. of Geodetic Science. 280, Ohio State Univ.Google Scholar
  7. Baker, T.F. 1980a. Tidal gravity in Britain; tidal loading and the spatial distribution of the marine tide. Geophys. J. R. astr. Soc. 62: 249–267.Google Scholar
  8. Baker, T.F. 1980b. Tidal tilt at Llanrwst, North Wales: tidal loading and Earth structure. Geophys. J. R. astr. Soc. 62: 269–290.Google Scholar
  9. Baker, T. F., D. J. Curtis and A. H. Dodson 1996. A new test of earth tide models in central Europe. Geophys. Res. Lett.. 23: 3559–3562.Google Scholar
  10. Baker, T.F. and G.W. Lennon 1976. Spatial coherency and tidal tilts. In: Proc. 7th Int. Symp. Earth Tides. pp. 479–493. G. Szàdeczky-Kardoss (ed.)., Schweizerbart, Stuttgart.Google Scholar
  11. Boussinesque, J. 1885. Application des Potentiels à l'Étude de l'Équilibre et du Movement des Solid Élastiques. 508 pp. Gauthiers-Villars, Paris.Google Scholar
  12. Brozena, P. 1992. The Greenland Aerogeophysics Project: Airborne gravity, topographic and magnetic mapping of an entire continent. 6th Int. Symp. on Satellite Pos., Columbus, OH, March 1992.Google Scholar
  13. Büker, F., G. Jentzsch and S. Koa. 1995. Ocean tidal loading and topographic effects on tilt at Blå Sjø, Southern Norway. In: Proc. 12th Int. Symp. Earth Tides. pp. 475–486. H.-T. Hsu (ed.). Science Press, Beijing.Google Scholar
  14. Cartwright, D.E. 1991. Detection of tides from artificial satellites (Review). In: Tide Hydrodynamics. pp. 547–568. Parker, B.B. (ed.). Wiley, New York.Google Scholar
  15. Darwin, G.H. 1882. A numerical estimate of the rigidity of the earth. Nature. 27.Google Scholar
  16. Dziewonski, A.M. and D.L. Anderson. 1981. Preliminary reference Earth model. Phys. Earth planet. Int. 25: 297–356.Google Scholar
  17. Eanes, R.J. 1994. Diurnal and semidiurnal tides from TOPEX/POSEIDON altimetry. EOS (Trans. Am. geophys. Union). 75: 108.Google Scholar
  18. Ekman, M. 1993. A concise history of the theories of tides, precession-nutation and polar motion (from antiquity to 1950). Surv. Geophys.. 14: 585–617.Google Scholar
  19. Engen, B., G. Jentzsch, F. Madsen and P. Schwintzer. 1995. NATURE: North Atlantic Tides Under Research — Tidal gravity measurements around the Norwegian Greenland Sea —. In: Proc. 12th Int. Symp. Earth Tides. pp 451–461. H.-T. Hsu (ed.). Science Press, Beijing.Google Scholar
  20. Farrell, W.E. 1972. Deformation of the earth by surface loads. Rev. Geophys. Space Phys. 10: 761–797.Google Scholar
  21. Farrell, W.E. 1973. Earth tides, ocean tides and tidal loading. Phil. Trans. Roy. Soc. London A 274: 253–259.Google Scholar
  22. Flather, R.A. 1976. A tidal model of the north-west European continental shelf. Mem. Soc. R. Sci. Liège 10: 141–164.Google Scholar
  23. Francis, O. and P. Melchior 1996. Tidal loading in south western Europe: a test area. Geophys. Res. Lett.. 23:2251–2254.Google Scholar
  24. Goad, C.C. 1980. Gravimetric tidal loading from integrated Green's functions. J. Geophys. Res.. 85: 2679–2683.Google Scholar
  25. Harrison, J.C. 1976. Cavity and topographic effects in tilt and strain measurement. J. geophys. Res.. 81: 319–328.Google Scholar
  26. Harrison, J.C. 1985. Earth tides. Benchmark Papers in Geology Series. Van Nostrand Reinhold Comp., New York, 419pp.Google Scholar
  27. Hendershott, M.C. 1972. The effects of solid earth deformation on global ocean tides. Geophys. J.R. astr. Soc.. 29: 389–402.Google Scholar
  28. Jahr, T. 1989. Gezeitengravimetrie in Dänemark. Berl. Geowiss. Abh. B 16: 1–137.Google Scholar
  29. Jahr, T., G. Jentzsch, N. Andersen and O. Remmer. 1991. Ocean tidal loading on the shelf areas around Denmark. In: Proc. 11th Int. Symp. Earth Tides. pp. 309–319. J. Kakkuri (ed.). Schweizerbart, Stuttgart.Google Scholar
  30. Jentzsch, G. 1981. Improved tidal corrections for high precision gravity surveys. Earth Evol. Scs.. 1: 89–91.Google Scholar
  31. Jentzsch, G. 1985. The influence of the grid structure on the results of loading calculations. Bull. Inf. Marées Terr.. 94: 6382–6386.Google Scholar
  32. Jentzsch, G. 1986. Auflastgezeiten in Fennoskandien. Berl. Geowiss. Abh. B 13: 1–184.Google Scholar
  33. Jentzsch, G., M. Ramatschi and F. Madsen. 1995. Tidal gravity measurements on Greenland. Bull. Inf. Marées Terrestres 122: 9239–9248.Google Scholar
  34. Llubbes, M. and P. Mazzega 1996. The ocean tide gravimetric loading reconsidered. Geophys. Res. Lett.. 23: 1481–1484.Google Scholar
  35. Longman, I.M. 1962. A Green's function for determining the deformation of the earth under surface mass loads, 1, theory. J. geophys. Res. 67: 845–850.Google Scholar
  36. Longman, I.M. 1963. A Green's function for determining the deformation of the earth under surface mass loads, 2, computations and numerical results. J. Geophys. Res. 68: 485–496.Google Scholar
  37. Melchior, P., M. Moens, B. Ducarme and M. van Ruymbeke. 1981. Tidal loading along profile Europe — East Africa — South Asia — Australia and Pacific Ocean. Phys. Earth planet. Inter. 25: 71–106.Google Scholar
  38. Munk, W.H. and G.J.F. MacDonald. 1960. The rotation of the earth. Cambridge Univ. Press, New York, 323p.Google Scholar
  39. Pagiatagis, S.P. 1990. The response of a realistic earth to ocean tide loading. Geophys. J. Int.. 103: 541–560.Google Scholar
  40. Schwiderski, E.W. 1979a. Ocean tides, part I: Global tidal equations. Marine Geodesy. 3: 161.Google Scholar
  41. Schwiderski, E.W. 1979b. Ocean tides, part II: A hydrographical interpolation model. Marine Geodesy. 3: 219.Google Scholar
  42. Schwiderski, E.W. 1979c. Global ocean tides II: The semidiurnal principal lunar tide (M2). Atlas of tidal charts and maps, NSWC, Dahlgren.Google Scholar
  43. Schwiderski, E.W. 1980. Global ocean tides V. The diurnal principle lunar tide (O1). Atlas of tidal charts and maps, NSWC, Dahlgren.Google Scholar
  44. Weise, A. 1986. Prediction of tidal corrections by collocation of tidal residuals. In: Proc. 10th Int. Symp. Earth Tides. pp. 521–529. R. Vieira (ed.). Cons. Sup. Invest. Cient., Madrid.Google Scholar
  45. Zschau, J. 1976. Tidal sea load tilt of the crust and its application to the study of crustal and upper mantle structures. Geophys. J. R. astr. Soc. 44: 577–593.Google Scholar
  46. Zschau, J. 1977. Phase shifts of tidal sea load deformations of the earth's surface due to low viscosity layers in the interior. in: Proc. 8th Int. Symp. Earth Tides. pp. 372–398. Bonatz, M. and P. Melchior (ed.). Bonn.Google Scholar
  47. Zschau, J. 1978. Tidal friction in the solid earth: loading tides versus body tides. In: Tidal Friction and the Earth's Rotation. pp 62–94. P. Brosche, J. Sündermann (ed.). Springer, Berlin.Google Scholar
  48. Zürn, W., C. Beaumont and L.B. Slichter. 1976. Gravity tides and ocean loading in southern Alaska. J. geophys. Res.. 81: 4923–4932.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Gerhard Jentzsch
    • 1
  1. 1.Institut für GeowissenschaftenFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations