Advertisement

Aftermath of the Cretaceous-Tertiary extinction: Rate and nature of the early paleocene molluscan rebound

  • Hansen Thor A. 
  • Upshaw Banks 
Mesozoic/Cenozoic Events
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 30)

Abstract

A preliminary analysis of the first 150.000 years of the Paleocene molluscan rebound interval in the Brazos River area, Texas reveals a rapid diversity increase comprised of a roughly equal blend of local and immigrant Cretaceous survivors and new Paleocene species. This increase plateaus around 30.000–40.000 years after the K-T boundary at a relatively low level compared to former Cretaceous or later Paleocene diversity levels, suggesting a prolonged environmental stress after the K-T event. Species of uncertain evolutionary origin constitute a major portion of the assemblage, and until these taxa are identified, we won't know the precise proportions of new and survivor taxa, or the earliest occurrence of new Paleocene species. The presence of a very low diversity, numerically dominated assemblage just above the K-T boundary tsunamite and the appearance of the first definite new Paleocene species some distance above this, suggests the nature of the Paleocene rebound is more consistent with a rapid, catastrophic extinction than with a gradual environmental deterioration.

Keywords

Mass Extinction Planktonic Foraminifera Tsunami Deposit Molluscan Assemblage Extinction Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. (1980): Extraterrestrial cause for the Cretaceous-Tertiary extinction. — Science, 208, 1095–1108.Google Scholar
  2. Alvarez, W., Kauffman, E. G., Surlyk, F., Alvarez, L. W., Asaro, F. & Michel, H. (1984): Impact theory of mass extinctions and the invertebrate fossil record. — Science, 223, 1135–1141.Google Scholar
  3. Archibald, J. D. & Clemens, W. A. (1982): Late Cretaceous extinctions. — American Scientist, 70, 377–385.Google Scholar
  4. Bourgeois, J., Hansen, T. A., Wiberg, P. L. & Kauffman, E. G. (1988): A tsunami deposit at the Cretaceous-Tertiary boundary in Texas. — Science, 241, 567–570.Google Scholar
  5. Emiliani, C., Kraus, E. B. & Shoemaker, E. M. (1981): Sudden death at the end of the Mesozoic. — Earth and Planetary Science Letters, 55, 317–334.CrossRefGoogle Scholar
  6. Erickson, D. J. III & Dickson, S. M. (1987): Global trace-element biogeochemistry at the K/T boundary: Oceanic and biotic response to a hypothetical meteorite impact. — Geology, 15, 1014–1017.CrossRefGoogle Scholar
  7. Gerstel, J., Thunell, R. & Ehrlich, R. (1987): Danian faunal succession: Planktonic foraminiferal response to a changing marine environment. — Geology, 15, 665–668.CrossRefGoogle Scholar
  8. Hallam, A. (1987): End-Cretaceous mass extinction event: Argument for terrestrial causation. — Science, 238, 1237–1242.Google Scholar
  9. Hansen, T. A. (1988): Early Tertiary radiation of marine molluscs and the long-term effects of the Cretaceous-Tertiary extinction. — Paleobiology, 14, 37–51.Google Scholar
  10. Hansen, T. A., Farrand, R. B., Montgomery, H. A., Billman, H. G. & Blechschmidt, G. (1987): Sedimentology and extinction patterns across the Cretaceous-Tertiary boundary interval in East Texas. — Cretaceous Research, 8, 229–252.CrossRefGoogle Scholar
  11. Jablonski, D. (1983): Apparent vs. real extinctions at the end of the Cretaceous Period. — Geological Society of America abstracts with Program, 15, 602.Google Scholar
  12. Jiang, M. J. & Gartner, S. (1986): Calcareous nannofossil succession across the Cretaceous/Tertiary boundary in east-central Texas. — Micropaleontology, 32, 232–255.Google Scholar
  13. Kauffman, E. G. (1984): The fabric of Cretaceous marine extinction. — In: Berggren, W. A. & Van Couvering, J. A. (eds.): Catastrophes and Earth History. Pp. 151–246; Princeton University Press, Princeton, New Jersey.Google Scholar
  14. Keller, G. (1988): The K/T boundary mass extinctions in the western interior seaway (Brazos River, Texas). — Geological Society of America Abstracts with Program, 20, A370.Google Scholar
  15. Lewis, J. S., Watkins, G. H., Hartman, H. & Prinn, R. G. (1982): Chemical consequences of major impact events on Earth. — Geological Society of America Special Paper, 190, 215–221.Google Scholar
  16. Lowrie, W. & Alvarez, W. (1981): One hundred million years of geomagnetic polarity history. — Geology, 9, 392–397.CrossRefGoogle Scholar
  17. McLean, D. M. (1985): Deccan traps mantle degassing in the terminal Cretaceous marine extinctions. — Cretaceous Research, 6, 235–259.CrossRefGoogle Scholar
  18. Prinn, R. G. (1985): Impacts, acid rain, and biospheric traumas. — Eos Transactions, 66, 813.Google Scholar
  19. Sheehan, P. M. & Hansen, T. A. (1986): Detritus feeding as a buffer to extinction at the end of the Cretaceous. — Geology, 14, 868–870.Google Scholar
  20. Smit, J. (1982): Extinction and evolution of planktonic foraminifera after a major impact at the Cretaceous/Tertiary boundary. — Geological Society of America Special Paper, 190, 329–352.Google Scholar
  21. Surlyk, F. & Johansen, M. B. (1984): End-Cretaceous brachiopod extinctions in the chalk of Denmark. — Science, 223, 1174–1177.Google Scholar
  22. Toon, O. B., Pollack, J. B., Ackerman, T. P., Turco, R. P., McKay, C. P. & Liu, M. S. (1982): Evolution of an impact-generated dust cloud and its effects on the atmosphere. — Geological Society of America Specieal Paper, 190, 187–200.Google Scholar
  23. Tschudy, R. H., Pillmore, C. L., Orth, C. J., Gilmore, J. S. & Knight, J. D. (1984): Disruption of the terrestrial plant ecosystem at the Cretaceous-Tertiary boundary, western interior. — Science, 225, 1030–1032.Google Scholar
  24. Wolbach, W. S., Lewis, R. S. & Anders, E. (1985): Cretaceous extinctions: evidence for wildfires and search for meteoritic material. — Science, 230, 167–170.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Hansen Thor A. 
  • Upshaw Banks 
    • 1
  1. 1.Department of GeologyWestern Washington UniversityBellinghamUSA

Personalised recommendations