Biogeochemical modeling at mass extinction boundaries: Atmospheric carbon dioxide and ocean alkalinity at the K/T boundary

  • Caldeira Ken 
  • Rampino Michael R. 
  • Volk Tyler 
  • Zachos James C. 
Mesozoic/Cenozoic Events
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 30)


The causes of mass extinctions and the importance of major bio-events in the history of life are subjects of considerable scientific interest. A large amount of geological, geochemical, and paleontological information now exists for the Cretaceous/Tertiary (K/T) boundary (66 Myr BP). These data are used here to constrain a newly developed time-dependent biogeochemical cycle model that is designed to study transient behavior of the earth system. Model results suggest significant fluctuations in ocean alkalinity, atmospheric CO2, and global temperatures at the K/T boundary, brought about by the extinction of calcareous plankton and reduction in pelagic CaCO3 and organic carbon sedimentation rates. Oxygenisotope analyses and other paleoclimatic data provide some evidence that such climatic fluctuations may have occurred, but stabilizing feedback processes may have acted to reduce the ocean-alkalinity and carbon dioxide fluctuations.


Mass Extinction Benthic Foraminifera Magnesium Silicate Biogeochemical Modeling Mass Extinction Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez, L. W. (1987): Mass Extinctions Caused by Large Bolide Impacts. — Physics Today, 40 (July), 24–33.PubMedGoogle Scholar
  2. Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. (1980): Extraterrestrial Cause for the Cretaceous-Tertiary Extinction. — Science, 208, 1095–1108.Google Scholar
  3. Alvarez, W. (1986): Towards a Theory of Impact Crises. — Eos, Trans. Am. Geophys. Union, 67, 649–658.Google Scholar
  4. Arthur, M. A., Dean, W. E. & Schlanger, S. O. (1985): Variations in the Global Carbon Cycle during the Cretaceous Related to Climate, Volcanism and Changes in Atmospheric CO2. — Geophys. Monograph, 32, 504–529.Google Scholar
  5. Berner, R. A., Lasaga, A. C. & Garrels, R. M. (1983): The carbonate-Silicate Geochemical Cycle and its Effect on Atmospheric Carbon Dioxide over the Past 100 Million Years. — Am. Jour. Sci., 283, 641–683.Google Scholar
  6. Broecker, W. S. & Peng, T-H. (1982): Tracers in the Sea. — Eldigio Press, Palisades, NY.Google Scholar
  7. Caldeira, K. & Rampino, M. R. (1989): Carbon Dioxide, the Deccan Traps, and the Cretaceous/Tertiary Boundary. — Snowbird II Volume (in press).Google Scholar
  8. Caldeira, K., Rampino, M. R. & Zachos, J. C. (1988): Atmospheric CO2 and the Cretaceous/Tertiary Boundary. — Eos, 69, 377.Google Scholar
  9. Courtillot, V. et al. (1986): Deccan Flood Basalts at the Cretaceous/Tertiary Boundary? — Earth and Planet Sci. Lett., 80, 361–374.CrossRefGoogle Scholar
  10. Delaney, M. L. & Boyle, E. A. (1986): Lithium in Foraminiferal Shells: Implications for High-Temperature Hydrothermal Circulation Fluxes and Ocean Crustal Generation Rates. — Earth and Planetary Science Letters, 80, 91–105.CrossRefGoogle Scholar
  11. Delaney, M. L. & Boyle, E. A. (1988): Tertiary Paleoceanic Chemical Variability: Unintended Consequences of Simple Geochemical Models. — Paleoceanography, 3, 137–156.Google Scholar
  12. Erwin, D. H., Valentine, J. W. & Sepkoski, J. J., Jr. (1987): A Comparative Study of Diversification Events: The Early Paleozoic Versus the Mesozoic. — Evolution, 41, 1177–1186.PubMedGoogle Scholar
  13. Gear, W. (1971): Numerical Initial Value Problems in Ordinary Differential Equations. — Prentice-Hall, Englewood Cliffs, N.J., 253 p.Google Scholar
  14. Hallam, A. (1987): End-Cretaceous Mass Extinction Event: Argument for Terrestrial Causation. — Science, 238, 1237–1242.Google Scholar
  15. Haq, B. U., Hardenbol, J. & Vail, P. R. (1987): Chronology of Fluctuating Sea Levels Since the Triassic. — Science, 235, 1156–1167.Google Scholar
  16. Hsu, K. J. (1986): Cretaceous/Tertiary boundary event. — Mesozoic and Cenozoic Oceans, Geodynamics Series, Volume 15, Amer. Geophys. Union, Washington, 75–84.Google Scholar
  17. Hut, P., Alvarez, W., Elder, W. P., Hansen, T., Kauffman, E. G., Keller, G., Shoemaker, E. M. & Weissman, P. (1987): Comet Showers as a Cause of Mass Extinctions. — Nature, 329, 118–126.CrossRefGoogle Scholar
  18. Jablonski, D. (1986): Background and Mass Extinctions: The Alternation of Macroevolutionary Regimes. — Science, 231, 129–133.Google Scholar
  19. Jones, D. S. et al. (1987): Biotic, Geochemical and Paleomagnetic Changes Across the Cretaceous/Tertiary Boundary at Braggs, Alabama. — Geology, 15, 311–315.CrossRefGoogle Scholar
  20. Kasting, J. F., Richardson, S. M., Pollack, J. B. & Atoon, O. B. (1986): A Hybrid Model of the CO2 Geochemical Cycle and its Application to Large Impact Events. — Am. Jour. Sci., 286, 361–389.Google Scholar
  21. Kauffman, E. G. (1986): High-resolution event stratigraphy: Regional and global Cretaceous bio-events. — In: Walliser, O. H. (ed.): Global Bio-Events. — Springer-Verlag, Berlin, pp. 279–335.Google Scholar
  22. Kauffman, E. G. (1988): The Dynamic of Marine Stepwise Extinctions. — In: Lamolda, M., Kauffman, E. G. & Walliser, O. H. (eds.): Paleontology and Evolution: Extinction Events. — Rev. Espanola de Paleont., n. extrord., 57–71.Google Scholar
  23. Keir, S. & Berger, W. H. (1983): Atmospheric CO2 Content in the Last 120,000 years: The Phosphate Extraction Model. — Jour. Geophys. Res., 88, 6027–6038.Google Scholar
  24. Kump, L. R. & Garrels, R. M. (1986): Modeling Atmospheric O2 in the Global Sedimentary Redox Cycle. — Am. Jour. Sci., 286, 337–360.Google Scholar
  25. Lasaga, A. (1984): Chemical Kinetics of Water-Rock Interactions. — Jour. Geophys. Res., 89, 4009–4025.Google Scholar
  26. Lasaga, A. C., Berner, R. A. & Garrels, R. M. (1985): An Improved Geochemical Model of the Atmospheric CO2 Fluctuations Over the Past 100 Million Years. — Am. Geophys. Union Mon., 32, 397–411.Google Scholar
  27. Margolis, S. V. et al. (1987): The Cretaceous/Tertiary Boundary Carbon and Oxygen Isotope Stratigraphy, Diagenesis, and Paleoceanography at Zumaya, Spain. — Paleoceanography, 2, 361–377.Google Scholar
  28. McDougall, J. D. (1988): Seawater Strontium Isotopes, Acid Rain, and the Cretaceous-Tertiary Boundary. — Science, 239, 485–487.Google Scholar
  29. McKinney, M. L. (1987): Taxonomic Selectivity and Continuous Variation in Mass and Background Extinctions of Marine Taxa. — Nature, 325, 143–145.CrossRefGoogle Scholar
  30. Mount, J. F. et al. (1986): Carbon and Oxygen Isotope Stratigraphy of the Upper Maastrichtian, Zumaya, Spain: A Record of Oceanographic and Biological Changes at the end of the Cretaceous Period. — Palaios, 1, 87–92.Google Scholar
  31. O'Keefe, J. D. & Ahrens, T. J. (1989): Impact Production of CO2 by the Cretaceous/Tertiary Extinction Bolide and the Resultant Heating of the Earth. — Nature, 338, 247–249.CrossRefGoogle Scholar
  32. Palmer, M. R. & Elderfield, H. (1985): Sr Isotope Composition of Sea Water over the Past 75 Myr. — Nature, 314, 526–529.CrossRefGoogle Scholar
  33. Parsons, B. & Sclater, J. G. (1977): An Analysis of the Variation of Ocean Floor Bathymetry and Heat Flow with Age. — Jour. Geophys. Research, 87 (B1), 289–302.Google Scholar
  34. Peng, T.-H. et al. (1987): Seasonal Variability of Carbon Dioxide, Nutrients and Oxygen in the Northern North Atlantic Surface Water: Observations and a Model. — Tellus, 39 B, 439–458.Google Scholar
  35. Perch-Nielsen, K., McKenzie, J. & He, Q. (1982): Biostratigraphy and Isotope Stratigraphy and the “Catastrophic Extinctions ”of the Calcareous Nannoplankton at the Cretaceous/Tertiary Boundary. — Spec. Pap. Geol. Soc. Am., 190, 353–371.Google Scholar
  36. Prinn, R. G. & Fegley, B., Jr. (1987): Bolide Impacts, Acid Rain, and Biospheric Traumas at the Cretaceous-Tertiary Boundary. — Earth Planet. Sci. Lett., 83, 1–15.CrossRefGoogle Scholar
  37. Rampino, M. R. & Stothers, R. B. (1984a): Terrestrial Mass Extinctions, Comet Impacts and the Sun's Motion Perpendicular to the Galactic Plane. — Nature, 308, 709–712.CrossRefGoogle Scholar
  38. Rampino, M. R. & Stothers, R. B. (1984b): Geological Rhythms and Cometary Impacts. — Science, 226, 1427–1431.Google Scholar
  39. Rampino, M. R. & Volk, T. (1988): Mass Extinctions, Atmospheric Sulphur and Climatic Warming at the K/T Boundary. — Nature, 322, 63–65.CrossRefGoogle Scholar
  40. Raup, D. M. (1986): Biological Extinction in Earth History. — Science, 231, 1528–1533.PubMedGoogle Scholar
  41. Raup, D. M. (1987): Extraterrestrial Causes of Mass Extinction: An Update. — Space Life Sciences Symposium: Three Decades of Life Science Research in Space, Abstracts, Washington, D.C., June 21–26, 1987, 364–365.Google Scholar
  42. Raup, D. M. (1988): Diversity Crises in the Geological Past. — In: Wilson, E. O. (ed.): Biodiversity. — 51–57, National Academy Press, Washington.Google Scholar
  43. Raup, D. M. & Sepkoski, J. J., Jr. (1984): Periodicity of Extinctions in the Geologic Past. — Proc. Nat'l. Acad. Sci. USA, 81, 801–805.Google Scholar
  44. Raup, D. M. & Sepkoski, J. J., Jr. (1986): Periodic Extinction of Families and Genera. — Science, 231, 833–836.PubMedGoogle Scholar
  45. Sclater, J. G., Boyle, E. & Edmond, J. M. (1979): A Quantitative Analysis of Some Factors Affecting Carbonate Sedimentation in the Ocean. — In: Talwani, M., Hay, W. & Ryan, W. B. F. (eds.): Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment. — Maurice Ewing Series, 3, 235–248, AGU, Washington, DC.Google Scholar
  46. Sepkoski, J. J., Jr. (1986): Phanerozoic Overview of Mass Extinction. — In: Raup, D. M. & Jablonski, D. (eds.): Patterns and Processes in the History of Life, 277–295; Springer-Verlag, Berlin.Google Scholar
  47. Shackleton, N. J. (1987): The Carbon Isotope Record of the Cenozoic: History of Organic Carbon Burial and of Oxygen in the Ocean and Atmosphere. — In: Brooks, J. & Fleet, A. J. (eds.): Marine Petroleum Source Rocks. — Geol. Soc. Spec. Publ., 26, 423–434, Blackwell Scientific, Palo Alto.Google Scholar
  48. Southam, J. R. & Hay, W. W. (1977): Time scales and dynamic models of deep sea sedimentation. — Jour. Geophys. Research, 82, 3825–3842.Google Scholar
  49. Stumm, W. & Morgan, J. (1981): Aquatic Chemistry. — Wiley, N.Y., 350 pp.Google Scholar
  50. Valentine, J. W. (1986): The Permian-Triassic Extinction Event and Invertebrate Developmental Modes. — Bulletin of Marine Science, 39, 607–615.Google Scholar
  51. Volk, T. (1987): Feedbacks Between Weathering and Atmospheric CO2 over the Last 100 Million Years. — Am. Jour. Sci., 287, 763–779.Google Scholar
  52. Volk, T. & Hoffert, M. I. (1985): Ocean Carbon Pumps: Analysis of Relative Strengths and Efficiencies in Ocean-Driven Atmospheric CO2 Changes. — Geophys. Monograph, 32, 99–110.Google Scholar
  53. Walker, J. C. G., Hays, P. B. & Kasting, J. F. (1981): A Negative Feedback Mechanism for the Long-term Stabilization of the Earth's Surface Temperature. — Jour. Geophys. Res., 86, 9776–9782.Google Scholar
  54. Walliser, O. H. (1987): Global Biological Events in Earth History (IGCP Project 216). — Modern Geology, 11, 79–82.Google Scholar
  55. Zachos, J. C. & Arthur, M. A. (1986): Paleoceanography of the Cretaceous/Tertiary Boundary Event: Inferences From Stable Isotopic and Other Data. — Paleoceanography, 1, 5–26.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Caldeira Ken 
    • 1
  • Rampino Michael R. 
    • 1
    • 2
  • Volk Tyler 
    • 1
  • Zachos James C. 
    • 3
  1. 1.Earth Systems Group, Department of Applied ScienceNew York UniversityNew YorkUSA
  2. 2.NASA, Goddard Space Flight CenterInstitute for Space StudiesNew YorkUSA
  3. 3.Dept. of Geological SciencesUniversity of MichiganAnn ArborUSA

Personalised recommendations