Skip to main content

Biogeochemical modeling at mass extinction boundaries: Atmospheric carbon dioxide and ocean alkalinity at the K/T boundary

  • Mesozoic/Cenozoic Events
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 30))

Abstract

The causes of mass extinctions and the importance of major bio-events in the history of life are subjects of considerable scientific interest. A large amount of geological, geochemical, and paleontological information now exists for the Cretaceous/Tertiary (K/T) boundary (66 Myr BP). These data are used here to constrain a newly developed time-dependent biogeochemical cycle model that is designed to study transient behavior of the earth system. Model results suggest significant fluctuations in ocean alkalinity, atmospheric CO2, and global temperatures at the K/T boundary, brought about by the extinction of calcareous plankton and reduction in pelagic CaCO3 and organic carbon sedimentation rates. Oxygenisotope analyses and other paleoclimatic data provide some evidence that such climatic fluctuations may have occurred, but stabilizing feedback processes may have acted to reduce the ocean-alkalinity and carbon dioxide fluctuations.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez, L. W. (1987): Mass Extinctions Caused by Large Bolide Impacts. — Physics Today, 40 (July), 24–33.

    PubMed  Google Scholar 

  • Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. (1980): Extraterrestrial Cause for the Cretaceous-Tertiary Extinction. — Science, 208, 1095–1108.

    Google Scholar 

  • Alvarez, W. (1986): Towards a Theory of Impact Crises. — Eos, Trans. Am. Geophys. Union, 67, 649–658.

    Google Scholar 

  • Arthur, M. A., Dean, W. E. & Schlanger, S. O. (1985): Variations in the Global Carbon Cycle during the Cretaceous Related to Climate, Volcanism and Changes in Atmospheric CO2. — Geophys. Monograph, 32, 504–529.

    Google Scholar 

  • Berner, R. A., Lasaga, A. C. & Garrels, R. M. (1983): The carbonate-Silicate Geochemical Cycle and its Effect on Atmospheric Carbon Dioxide over the Past 100 Million Years. — Am. Jour. Sci., 283, 641–683.

    Google Scholar 

  • Broecker, W. S. & Peng, T-H. (1982): Tracers in the Sea. — Eldigio Press, Palisades, NY.

    Google Scholar 

  • Caldeira, K. & Rampino, M. R. (1989): Carbon Dioxide, the Deccan Traps, and the Cretaceous/Tertiary Boundary. — Snowbird II Volume (in press).

    Google Scholar 

  • Caldeira, K., Rampino, M. R. & Zachos, J. C. (1988): Atmospheric CO2 and the Cretaceous/Tertiary Boundary. — Eos, 69, 377.

    Google Scholar 

  • Courtillot, V. et al. (1986): Deccan Flood Basalts at the Cretaceous/Tertiary Boundary? — Earth and Planet Sci. Lett., 80, 361–374.

    Article  Google Scholar 

  • Delaney, M. L. & Boyle, E. A. (1986): Lithium in Foraminiferal Shells: Implications for High-Temperature Hydrothermal Circulation Fluxes and Ocean Crustal Generation Rates. — Earth and Planetary Science Letters, 80, 91–105.

    Article  Google Scholar 

  • Delaney, M. L. & Boyle, E. A. (1988): Tertiary Paleoceanic Chemical Variability: Unintended Consequences of Simple Geochemical Models. — Paleoceanography, 3, 137–156.

    Google Scholar 

  • Erwin, D. H., Valentine, J. W. & Sepkoski, J. J., Jr. (1987): A Comparative Study of Diversification Events: The Early Paleozoic Versus the Mesozoic. — Evolution, 41, 1177–1186.

    PubMed  Google Scholar 

  • Gear, W. (1971): Numerical Initial Value Problems in Ordinary Differential Equations. — Prentice-Hall, Englewood Cliffs, N.J., 253 p.

    Google Scholar 

  • Hallam, A. (1987): End-Cretaceous Mass Extinction Event: Argument for Terrestrial Causation. — Science, 238, 1237–1242.

    Google Scholar 

  • Haq, B. U., Hardenbol, J. & Vail, P. R. (1987): Chronology of Fluctuating Sea Levels Since the Triassic. — Science, 235, 1156–1167.

    Google Scholar 

  • Hsu, K. J. (1986): Cretaceous/Tertiary boundary event. — Mesozoic and Cenozoic Oceans, Geodynamics Series, Volume 15, Amer. Geophys. Union, Washington, 75–84.

    Google Scholar 

  • Hut, P., Alvarez, W., Elder, W. P., Hansen, T., Kauffman, E. G., Keller, G., Shoemaker, E. M. & Weissman, P. (1987): Comet Showers as a Cause of Mass Extinctions. — Nature, 329, 118–126.

    Article  Google Scholar 

  • Jablonski, D. (1986): Background and Mass Extinctions: The Alternation of Macroevolutionary Regimes. — Science, 231, 129–133.

    Google Scholar 

  • Jones, D. S. et al. (1987): Biotic, Geochemical and Paleomagnetic Changes Across the Cretaceous/Tertiary Boundary at Braggs, Alabama. — Geology, 15, 311–315.

    Article  Google Scholar 

  • Kasting, J. F., Richardson, S. M., Pollack, J. B. & Atoon, O. B. (1986): A Hybrid Model of the CO2 Geochemical Cycle and its Application to Large Impact Events. — Am. Jour. Sci., 286, 361–389.

    Google Scholar 

  • Kauffman, E. G. (1986): High-resolution event stratigraphy: Regional and global Cretaceous bio-events. — In: Walliser, O. H. (ed.): Global Bio-Events. — Springer-Verlag, Berlin, pp. 279–335.

    Google Scholar 

  • Kauffman, E. G. (1988): The Dynamic of Marine Stepwise Extinctions. — In: Lamolda, M., Kauffman, E. G. & Walliser, O. H. (eds.): Paleontology and Evolution: Extinction Events. — Rev. Espanola de Paleont., n. extrord., 57–71.

    Google Scholar 

  • Keir, S. & Berger, W. H. (1983): Atmospheric CO2 Content in the Last 120,000 years: The Phosphate Extraction Model. — Jour. Geophys. Res., 88, 6027–6038.

    Google Scholar 

  • Kump, L. R. & Garrels, R. M. (1986): Modeling Atmospheric O2 in the Global Sedimentary Redox Cycle. — Am. Jour. Sci., 286, 337–360.

    Google Scholar 

  • Lasaga, A. (1984): Chemical Kinetics of Water-Rock Interactions. — Jour. Geophys. Res., 89, 4009–4025.

    Google Scholar 

  • Lasaga, A. C., Berner, R. A. & Garrels, R. M. (1985): An Improved Geochemical Model of the Atmospheric CO2 Fluctuations Over the Past 100 Million Years. — Am. Geophys. Union Mon., 32, 397–411.

    Google Scholar 

  • Margolis, S. V. et al. (1987): The Cretaceous/Tertiary Boundary Carbon and Oxygen Isotope Stratigraphy, Diagenesis, and Paleoceanography at Zumaya, Spain. — Paleoceanography, 2, 361–377.

    Google Scholar 

  • McDougall, J. D. (1988): Seawater Strontium Isotopes, Acid Rain, and the Cretaceous-Tertiary Boundary. — Science, 239, 485–487.

    Google Scholar 

  • McKinney, M. L. (1987): Taxonomic Selectivity and Continuous Variation in Mass and Background Extinctions of Marine Taxa. — Nature, 325, 143–145.

    Article  Google Scholar 

  • Mount, J. F. et al. (1986): Carbon and Oxygen Isotope Stratigraphy of the Upper Maastrichtian, Zumaya, Spain: A Record of Oceanographic and Biological Changes at the end of the Cretaceous Period. — Palaios, 1, 87–92.

    Google Scholar 

  • O'Keefe, J. D. & Ahrens, T. J. (1989): Impact Production of CO2 by the Cretaceous/Tertiary Extinction Bolide and the Resultant Heating of the Earth. — Nature, 338, 247–249.

    Article  Google Scholar 

  • Palmer, M. R. & Elderfield, H. (1985): Sr Isotope Composition of Sea Water over the Past 75 Myr. — Nature, 314, 526–529.

    Article  Google Scholar 

  • Parsons, B. & Sclater, J. G. (1977): An Analysis of the Variation of Ocean Floor Bathymetry and Heat Flow with Age. — Jour. Geophys. Research, 87 (B1), 289–302.

    Google Scholar 

  • Peng, T.-H. et al. (1987): Seasonal Variability of Carbon Dioxide, Nutrients and Oxygen in the Northern North Atlantic Surface Water: Observations and a Model. — Tellus, 39 B, 439–458.

    Google Scholar 

  • Perch-Nielsen, K., McKenzie, J. & He, Q. (1982): Biostratigraphy and Isotope Stratigraphy and the “Catastrophic Extinctions ”of the Calcareous Nannoplankton at the Cretaceous/Tertiary Boundary. — Spec. Pap. Geol. Soc. Am., 190, 353–371.

    Google Scholar 

  • Prinn, R. G. & Fegley, B., Jr. (1987): Bolide Impacts, Acid Rain, and Biospheric Traumas at the Cretaceous-Tertiary Boundary. — Earth Planet. Sci. Lett., 83, 1–15.

    Article  Google Scholar 

  • Rampino, M. R. & Stothers, R. B. (1984a): Terrestrial Mass Extinctions, Comet Impacts and the Sun's Motion Perpendicular to the Galactic Plane. — Nature, 308, 709–712.

    Article  Google Scholar 

  • Rampino, M. R. & Stothers, R. B. (1984b): Geological Rhythms and Cometary Impacts. — Science, 226, 1427–1431.

    Google Scholar 

  • Rampino, M. R. & Volk, T. (1988): Mass Extinctions, Atmospheric Sulphur and Climatic Warming at the K/T Boundary. — Nature, 322, 63–65.

    Article  Google Scholar 

  • Raup, D. M. (1986): Biological Extinction in Earth History. — Science, 231, 1528–1533.

    PubMed  Google Scholar 

  • Raup, D. M. (1987): Extraterrestrial Causes of Mass Extinction: An Update. — Space Life Sciences Symposium: Three Decades of Life Science Research in Space, Abstracts, Washington, D.C., June 21–26, 1987, 364–365.

    Google Scholar 

  • Raup, D. M. (1988): Diversity Crises in the Geological Past. — In: Wilson, E. O. (ed.): Biodiversity. — 51–57, National Academy Press, Washington.

    Google Scholar 

  • Raup, D. M. & Sepkoski, J. J., Jr. (1984): Periodicity of Extinctions in the Geologic Past. — Proc. Nat'l. Acad. Sci. USA, 81, 801–805.

    Google Scholar 

  • Raup, D. M. & Sepkoski, J. J., Jr. (1986): Periodic Extinction of Families and Genera. — Science, 231, 833–836.

    PubMed  Google Scholar 

  • Sclater, J. G., Boyle, E. & Edmond, J. M. (1979): A Quantitative Analysis of Some Factors Affecting Carbonate Sedimentation in the Ocean. — In: Talwani, M., Hay, W. & Ryan, W. B. F. (eds.): Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment. — Maurice Ewing Series, 3, 235–248, AGU, Washington, DC.

    Google Scholar 

  • Sepkoski, J. J., Jr. (1986): Phanerozoic Overview of Mass Extinction. — In: Raup, D. M. & Jablonski, D. (eds.): Patterns and Processes in the History of Life, 277–295; Springer-Verlag, Berlin.

    Google Scholar 

  • Shackleton, N. J. (1987): The Carbon Isotope Record of the Cenozoic: History of Organic Carbon Burial and of Oxygen in the Ocean and Atmosphere. — In: Brooks, J. & Fleet, A. J. (eds.): Marine Petroleum Source Rocks. — Geol. Soc. Spec. Publ., 26, 423–434, Blackwell Scientific, Palo Alto.

    Google Scholar 

  • Southam, J. R. & Hay, W. W. (1977): Time scales and dynamic models of deep sea sedimentation. — Jour. Geophys. Research, 82, 3825–3842.

    Google Scholar 

  • Stumm, W. & Morgan, J. (1981): Aquatic Chemistry. — Wiley, N.Y., 350 pp.

    Google Scholar 

  • Valentine, J. W. (1986): The Permian-Triassic Extinction Event and Invertebrate Developmental Modes. — Bulletin of Marine Science, 39, 607–615.

    Google Scholar 

  • Volk, T. (1987): Feedbacks Between Weathering and Atmospheric CO2 over the Last 100 Million Years. — Am. Jour. Sci., 287, 763–779.

    Google Scholar 

  • Volk, T. & Hoffert, M. I. (1985): Ocean Carbon Pumps: Analysis of Relative Strengths and Efficiencies in Ocean-Driven Atmospheric CO2 Changes. — Geophys. Monograph, 32, 99–110.

    Google Scholar 

  • Walker, J. C. G., Hays, P. B. & Kasting, J. F. (1981): A Negative Feedback Mechanism for the Long-term Stabilization of the Earth's Surface Temperature. — Jour. Geophys. Res., 86, 9776–9782.

    Google Scholar 

  • Walliser, O. H. (1987): Global Biological Events in Earth History (IGCP Project 216). — Modern Geology, 11, 79–82.

    Google Scholar 

  • Zachos, J. C. & Arthur, M. A. (1986): Paleoceanography of the Cretaceous/Tertiary Boundary Event: Inferences From Stable Isotopic and Other Data. — Paleoceanography, 1, 5–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erle G. Kauffman Otto H. Walliser

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Caldeira, K., Rampino, M.R., Volk, T., Zachos, J.C. (1990). Biogeochemical modeling at mass extinction boundaries: Atmospheric carbon dioxide and ocean alkalinity at the K/T boundary. In: Kauffman, E.G., Walliser, O.H. (eds) Extinction Events in Earth History. Lecture Notes in Earth Sciences, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0011156

Download citation

  • DOI: https://doi.org/10.1007/BFb0011156

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52605-6

  • Online ISBN: 978-3-540-47071-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics