Advertisement

Biological selectivity of extinction

  • Kitchell Jennifer A. 
General Aspects
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 30)

Abstract

Selective survival across major extinction event horizons is both a bothersome puzzle and an opportunity to delimit the biologically interesting question of causality. Heritable differences in characters may have predictable consequences in terms of differential species survival. Differences in magnitude and intensity of extinction are insufficient to distinguish background from mass extinction regimes. Biological adaptations may establish links of causality between abnormal times of mass extinction and normal times of background extinction. A current hypothesis, developed from a comparison of extinction patterns among Late Cretaceous molluscs, is that biological adaptations of organisms, effective during normal times of Earth history, are ineffectual during times of crises. A counter example is provided by data from high-latitude laminated marine strata that preserve evidence of an actively exploited life-history strategy among Late Cretaceous phytoplankton. These data illustrate a causal dependency between a biological character selected for during times of background extinction and macroevolutionary survivorship during an unusual time of crisis.

Keywords

Late Cretaceous Mass Extinction Extinction Rate Differential Survival Planktonic Foraminifera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. (1980): Extraterrestrial cause for the Cretaceous-Tertiary extinction. — Science, 208, 1095–1108.Google Scholar
  2. Alvarez, W., Alvarez, L.W., Asaro, F. & Michel, H. V. (1984): The end of the Cretaceous: sharp boundary or gradual transition? — Science, 223, 1183–1186.Google Scholar
  3. Barron, E. J. (1985): Numerical climate modeling, a frontier in petroleum source rock prediction: results based on Cretaceous simulations. — American Association of Petroleum Geologists Bull., 69, 448–459.Google Scholar
  4. Boyajian, G. F. (1986): Phanerozoic trends in background extinction: consequence of an aging fauna. — Geology, 14, 955–958.CrossRefGoogle Scholar
  5. Cooper, W. S. (1984): Expected time to extinction and the concept of fundamental fitness. — Journal of Theoretical Biology, 107, 603–629.Google Scholar
  6. Fryxell, G. A. (1983): Survival Strategies of the Algae. — Cambridge University Press, 144 p.Google Scholar
  7. Garrison, D. L. (1980): Monterey Bay phytoplankton I. Seasonal cycles of phytoplankton assemblages. — Journal of Plankton Research, 1, 241–265.Google Scholar
  8. Gombos, A. M., Jr. (unpubl. ms): A review of the record of Late Cretaceous diatom extinctions.Google Scholar
  9. Gould, S. J. (1984): The cosmic dance of Siva. — Natural History, 8, 14–19.Google Scholar
  10. Gould, S. J. (1985): The paradox of the first tier: an agenda for paleobiology. — Paleobiology, 11, 2–12.Google Scholar
  11. Gould, S. J. & Calloway, C. B. (1980): Clams and brachiopods — ships that pass in the night. — Paleobiology, 6, 383–396.Google Scholar
  12. Gresham, C. W. (1985): Cretaceous and Paleocene siliceous phytoplankton assemblages from DSDP sites 216, 214 and 208 in the Pacific and Indian Oceans. — Univ. of Wisconsin-Madison M.S. Thesis, 233 p.Google Scholar
  13. Hansen, T. A. (1978): Larval dispersal and species longevity in Lower Tertiary gastropods. — Science, 199, 885–887.Google Scholar
  14. Hansen, T. A. (1980): Influence of larval dispersal and geographic distribution on species longevity in neogastropods. — Paleobiology, 6, 193–207.Google Scholar
  15. Hargraves, P. E. & French, F. W. (1983): Diatom resting spores: significance and strategies. — In: Fryxell, G. A. (ed.): Survival Strategies of the Algae. — Cambridge University Press, Cambridge, 49–68.Google Scholar
  16. Harwood, D. M. (1986): Upper Cretaceous and lower Paleocene diatom and silicoflagellate biostratigraphy of Seymour Island, eastern Antarctic Peninsula. — In: Feldmann, R. M. & Woodburn, M. O. (eds.): Geological Society of America Memoir Series.Google Scholar
  17. Hoffman, A. & Kitchell, J. A. (1984): Evolution in a pelagic planktic system: a paleobiologic test of models of multispecies evolution. — Paleobiology, 10, 9–33.Google Scholar
  18. Jablonski, D. (1986): Background and mass extinctions: the alternation of macroevolutionary regimes. — Science, 231, 129–133.Google Scholar
  19. Kitchell, J. A., Clark, D. L. & Gombos, A. M., Jr. (1986): Biological selectivity of extinction: a link between background and mass extinction. — Palaios, 1, 504–511.Google Scholar
  20. Kitchell, J. A. & Estabrook, G. (1986): Was there 26-myr periodicity of extinctions? — Nature, 321, 534–535.CrossRefGoogle Scholar
  21. Kitchell, J. A. & Hoffman, A. (in press): Rates of origination and extinction: age-, time-, and diversity-dependence. — In: Stenseth, N. (ed.): Coevolution in Ecosystems. — Cambridge University Press, Cambridge.Google Scholar
  22. Kitchell, J. A. & Pena, D. (1984): Periodicity of extinctions in the geologic past: deterministic versus stochastic explanations. — Science, 226, 689–692.Google Scholar
  23. McKinney, F. K. (1986): Evolution of erect marine bryozoan faunas: repeated success of unilaminate species. — American Naturalist, 128, 795–809.CrossRefGoogle Scholar
  24. McPhee, J. (1980): Basin and Range. — Farrar, Straus, Giroux, New York, 216 p.Google Scholar
  25. Parrish, J. T. & Curtis, R. L. (1982): Atmospheric circulation, upwelling, and organic-rich rocks in the Mesozoic and Cenozoic eras. — Paleogeography, Palaeoclimatology, Paleoecology, 40, 31–66.Google Scholar
  26. Phillips, J. (1860): Life on the Earth: Its Origin and Succession. — Cambridge and London.Google Scholar
  27. Raup, D. M. (1986): Biological extinction in Earth history. — Science, 231, 1528–1533.PubMedGoogle Scholar
  28. Raup, D. M. & Sepkoski, J. J., Jr. (1982): Mass extinctions in the marine fossil record. — Science, 215, 1501–1503.Google Scholar
  29. Raup, D. M. & Sepkoski, J. J., Jr. (1984): Periodicities of extinctions in the geologic past. — Proc. of the National Academy of Sciences USA, 81, 801–805.Google Scholar
  30. Raup, D. M. & Sepkoski, J. J., Jr. (1986): Periodic extinction of families and genera. — Science, 231, 833–836.PubMedGoogle Scholar
  31. Sandgren, C. D. (1983): Survival strategies of chrysosphycean flagellates: reproduction and the formation of resistant resting cysts. — In: Fryxell, G. (ed.): Survival Strategies of the Algae. — Cambridge Univ. Press, Cambridge, 23–48.Google Scholar
  32. Simonsen, R. (1979): The diatom system: ideas on phylogeny. — Bacillaria, 2, 9–71.Google Scholar
  33. Smit, J. & Kyte, F. T. (1984): Siderophile-rich magnetic spheroids from the Cretaceous/Tertiary boundary in Umbria, Italy. — Nature, 310, 403–405.CrossRefGoogle Scholar
  34. Sober, E. (1984): The Nature of Selection. — MIT Press, Cambridge, Mass., 383 p.Google Scholar
  35. Stigler, S. M. (1987): Testing hypotheses or fitting models? Another look at mass extinctions. — In: Nitecki, M. (ed.): Neutral Models in Biology. — Oxford Univ. Press.Google Scholar
  36. Tappan, H. (1982): Extinction or survival: selectivity and causes of Phanerozoic crises. — In: Silver, L. T. & Schulz, P. H. (eds.): Geological Implications of Impacts of Large Asteroids and Comets on the Earth. — Geol. Soc. of America, Spec. Pap., 190, 265–276.Google Scholar
  37. Thierstein, H. R. (1982): Terminal Cretaceous plankton extinctions: a critical assessment. — In: Silver, L. T. & Schulz, P. H. (eds.): Geological Implications of Large Asteroids and Comets on the Earth. — Geol. Soc. of America, Spec. Pap., 190, 385–399.Google Scholar
  38. Van Valen, L. M. (1984): A resetting of Phanerozoic community evolution. — Nature, 307, 50–52.CrossRefGoogle Scholar
  39. Wolbach, W. S., Lewis, R. S. & Anders, E. (1985): Cretaceous extinctions: evidence for wildfires and search for meteoritic material. — Science, 230, 167–170.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Kitchell Jennifer A. 
    • 1
  1. 1.Department of Geological Sciences and Museum of PaleontologyUniversity of MichiganAnn ArborUSA

Personalised recommendations