Introduction to spectral analysis

  • B. Hofmann-Wellenhof
  • H. Moritz
Part A
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 7)


Fast Fourier Transform Fourier Series Discrete Fourier Transform Gravity Anomaly Spectral Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BAULE, B. (1966): Die Mathematik des Naturforschers und Ingenieurs. Band II. Ausgleichs-und Näherungsrechnung. S. Hirzel Verlag Leipzig. 101 pp.Google Scholar
  2. BRACEWELL, R. N. (1985): The Fourier transform and its applications. 2nd edition. McGraw-Hill International Book Company. xviii+444 pp.Google Scholar
  3. BRIGHAM, E. O. (1974): The fast Fourier transform. Prentice-Hall, Inc. Englewood Cliffs, New Jersey. xiii+252 pp.Google Scholar
  4. COLOMBO, O. L. (1979): Optimal estimation from data regularly sampled on a sphere with applications in geodesy. Department of Geodetic Science. Ohio State University, Columbus, Ohio. Report No. 297.Google Scholar
  5. HEISKANEN, W. A.; H. MORITZ (1967): Physical geodesy. W.H. Freeman & Co. San Francisco, London. xi+364 pp.Google Scholar
  6. MEISSL, P. (1976): Strength analysis of twodimensional angular Anblock networks. Manuscripta Geodaetica, Vol. 4(1976), pp. 293–334.Google Scholar
  7. MORITZ, H. (1976): Integral formulas and collocation. Manuscripta Geodaetica, Vol. 1(1976), pp. 1–40.Google Scholar
  8. SIDERIS, M. (1984): Computation of gravimetric terrain corrections using fast Fourier techniques. University of Calgary, Division of Surveying Engineering. UCSE Report No. 20007. 110 pp.Google Scholar
  9. SIDERIS, M. G.; K. P. SCHWARZ (1985): Solving Molodensky's series by fast Fourier transform. Proceedings of the I. Hotine-Marussi Symposium on Mathematical Geodesy. Rome, June 3–6, 1985, pp. 493–511.Google Scholar
  10. SONKEL, H. (1984): Splines: their equivalence to collocation. Department of Geodetic Science. Ohio State University, Columbus, Ohio. Report No. 353.Google Scholar
  11. SONKEL, H. (1985): Fourier analysis of geodetic networks. In: Optimization and design of geodetic networks (E. W. Grafarend and F. Sansò, eds.), Springer, Berlin. pp. 257–300.Google Scholar
  12. TEMPFLI, K. (1982): Genauigkeitsschätzung digitaler Höhenmodelle mittels Spektralanalyse. Veröffentlichungen des Instituts für Photogrammetrie der Technischen Universität Wien. Geowissenschaftliche Mitteilungen, Heft 22. 125 pp.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • B. Hofmann-Wellenhof
    • 1
  • H. Moritz
    • 1
  1. 1.Institute of Theoretical Geodesy Division of Physical GeodesyTechnical University GrazGrazAustria

Personalised recommendations