Skip to main content

Lipid biosynthesis in oleaginous yeasts

  • Conference paper
  • First Online:
Bioprocesses and Engineering

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 40))

Abstract

With the increasing demands for fats and oils for edible and industrial purposes, many assessments have been made to find new possible lipid sources other than from the conventional plants and animals. Lipids from microbial origin could represent such an alternative since microorganisms can store up to 65% fat in the cells and can be harvested in a minimum time, unaffected by climatic changes. However, unless the microbial oil, or one of its constituents, represent a high value specialty product, its production would be uneconomical.

This paper reviews the environmental conditions affecting the composition of the microbial oil (lipid classes and fatty-acyl distribution) from oleaginous yeasts. This approach will show that it is possible to “tailor-make” an oil with special properties, albeit in a restricted way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ratledge C (1976) In: Food from waste Birch GG, Parker KJ, Worgan JT (eds) Applied Science, London, p 98

    Google Scholar 

  2. Fedeli E, Jacini G (1971) Adv. Lipid Res. 9: 335

    Google Scholar 

  3. Jurriens SG (1968) In: Boekennogen HA (ed) Analysis and characterization of oils, fats and fat products, Interscience, New York, vol 12, p 217

    Google Scholar 

  4. Ratledge C (1978) Lipids and fatty acids. In: Rose AH (ed) Economic microbiology, Academic, New York, vol 2, p 263

    Google Scholar 

  5. Nylen P (1965) Modern surface coatings, Interscience, New York

    Google Scholar 

  6. Mumma RO, Sekura RD, Fergus CL (1971) Lipids 6(8): 584

    Google Scholar 

  7. Kessell RHJ (1968) J. Appl. Bacteriol. 31: 220

    Google Scholar 

  8. Hartman L, Hawke JC, Shortland FB, di Menna ME (1959) Arch. Biochem. Biophys. 81: 346

    Google Scholar 

  9. Zalashko MV, Romanova LV, Gerbeda VV, Pidoplichko GA (1979) Microbiol. 48(2): 181

    Google Scholar 

  10. Choi SY, Ryu DDY, Rhee JS (1982) Biotechnol. Bioeng. 24(5): 1165

    Google Scholar 

  11. Watson K, Rose AH (1980) J. Gen. Microbiol. 117(1): 225

    Google Scholar 

  12. Tatsumi C, Hashimoto Y, Terashima M, Matsuo T (1977) U.S. Patent, No. 4,032,405

    Google Scholar 

  13. Kammann KP Jr, Phillips AI (1985) JAOCS 62(5): 917

    Google Scholar 

  14. Carlson KD, Chang SP (1985) JAOCS 62(5): 934

    Google Scholar 

  15. Fulmer RW (1985) JAOCS 62(5): 926

    Google Scholar 

  16. Sonntag NOV (1985) JAOCS 62(5): 928

    Google Scholar 

  17. Cooper DG, Zajic JE (1980) Adv. Applied Microbiol 26: 229

    Google Scholar 

  18. Haferburg D, Hommel R, Claus R, Kleber HP (1986) Adv. Biochem. Eng./Biotechnol. 33: 53

    Google Scholar 

  19. Fujii T, Tonomura K (1971) Agri. Biol. Chem. 35(8): 1188

    Google Scholar 

  20. Dewitt S, Ervin JL, Howes-Orchison D, Dalietos D, Neidleman SL, Geigert J (1982) JAOCS 59(2): 69

    Google Scholar 

  21. Enebo L, Anderson LG, Lundin H (1946) Arch. Biochem. 11: 383

    Google Scholar 

  22. Moon NJ, Hammond EG (1978) JAOCS 55(10): 683

    Google Scholar 

  23. Ratledge C (1982) Microbial oils and fats: an assessment of their commercial potential. In: Bull MJ (ed) Prog. Ind. Microbiol. Elsevier, Amsterdam, vol 16, p 119

    Google Scholar 

  24. Spencer JFT, Spencer DM, Tulloch AP (1978) In: Rose AM (ed) Economic microbiology, Academic, New York, p 523

    Google Scholar 

  25. Uzuka Y, Kanamori T, Koga T, Tanaka K, Naganuma T (1975) J. Gen. Appl. Microbiol. 21(3): 157

    Google Scholar 

  26. Gierhart DL (1984) U.S. Patent, No. 4,485,172

    Google Scholar 

  27. Atamanyuk DI, Vakar LT (1975) Lipidy Gribov: 98

    Google Scholar 

  28. Gill CO, Hall MJ, Ratledge C (1977) Appl. Environ. Microbiol. 33(2): 231

    Google Scholar 

  29. Ratledge C, Hall MJ (1979) Biotechnol. Letters. 1: 115

    Google Scholar 

  30. Roy MK, Vadalkar K, Baruah B, Misra U, Bhagat SD, Baruah JN (1978) Indian J. Exp. Biol. 16(4): 511

    Google Scholar 

  31. Allen LA, Barnard NH, Fleming M, Hollis B (1964) J. Appl. Bacteriol. 27(1): 27

    Google Scholar 

  32. Gorodnyanskaya LI, Zvyagintseva IS (1978) Microbiol 47(3): 369

    Google Scholar 

  33. Goulet J (1975) Ph.D. Thesis, McGill University, Montreal, Canada

    Google Scholar 

  34. Ogata K, Kaneyuki H, Kato N, Tani Y, Yamada H (1973) J. Ferment. Technol. 51(4): 227

    Google Scholar 

  35. Park SO (1974) Hanguk Nonghwa Hakhoe Chi 17(2): 93

    Google Scholar 

  36. Pitryuk IA, Zvyagintseva IS, Bab'eva IP (1975) Microbiol. 44(5): 734

    Google Scholar 

  37. Yoon SH, Rhee JS (1983) JAOCS 60(7): 1281

    Google Scholar 

  38. Hall MJ, Ratledge C (1977) Appl. Environ. Microbiol. 33(3): 577

    Google Scholar 

  39. Hansson L, Dostálek M (1986) JAOCS 63(9): 1179

    Google Scholar 

  40. Maas-Forster M (1955) Archiv für Mikrobiologie 22: 115

    Google Scholar 

  41. Nielsen N, Nilsson NG (1953) Acta Chem. Scandinavica 7: 984

    Google Scholar 

  42. Evans CT, Ratledge C (1984) J. Gen. Microbiol. 130: 1693

    Google Scholar 

  43. Evans CT, Ratledge C (1984) J. Gen. Microbiol. 130: 1705

    Google Scholar 

  44. Glatz BA, Floetenmeyer MD, Hammond EG (1985) J. Food Prot. 48(7): 574

    Google Scholar 

  45. Atamanyuk DI, Borisova TA, Tsygulya TE (1978) Izv. Akad. Nauk Mold SSR, Ser. Biol. Khim. Nauk 5: 87

    Google Scholar 

  46. Picataggio SK, Smittle RB (1979) Eur. Pat. Appl. 277

    Google Scholar 

  47. Atamanyuk DI, Vakar LI (1976) Izv. Akad. Nauk Mold. SSR, Ser. Biol. Khim. Nauk 4: 48

    Google Scholar 

  48. Simard RE, Busque G, Riel RR (1973) Can. Inst. Food Sci. Technol. J., 6(1): 32

    Google Scholar 

  49. Nojiri M, Kakutani K, Uedono S, Uenakai K, Matsumoto M (1979) Ger. Offen., 2, 728: 353

    Google Scholar 

  50. Dostálek M (1986) Appl. Microbiol. Biotechnol. 24(1): 19

    Google Scholar 

  51. Maugenet J (1973) C.R. Seances Acad. Agr. Fr. 59 (7): 481

    Google Scholar 

  52. Floetenmeyer MD, Glatz BA, Hammond EG (1985) J. Dairy Sci. 68(3): 633

    Google Scholar 

  53. Davies RJ (1983) Rep.-N.Z., Dep. Sci. Ind. Res., Ind. Process Div., IPD/TSO: 2011

    Google Scholar 

  54. Steinberg M, Ordal Z (1954) J. Agric. Fd. Chem. 2: 873

    Google Scholar 

  55. Kates M, Baxter RM (1962) Can. J. Biochem. Physiol. 40: 1213

    Google Scholar 

  56. Thorpe RF, Ratledge C (1973) J. Gen. Microbiol. 78: 203

    Google Scholar 

  57. Enebo L, Iwamoto H (1966) Acta Chem. Scand. 20(2): 439

    Google Scholar 

  58. Guarneri JJ, Combs TJ, Pisano MA (1987) Dev. Ind. Microbiol. 20: 641

    Google Scholar 

  59. Heide S (1939) Arch. Mikrobiol. 10: 135

    Google Scholar 

  60. Raaf H (1941) Arch. Mikrobiol. 12: 131

    Google Scholar 

  61. Smedley-MacLean I (1922) Biochem. J. 16: 370

    Google Scholar 

  62. Smedley-MacLean I, Hoffert D (1923) Biochem. J. 17: 720

    Google Scholar 

  63. Pan SC, Andreasen AA, Kolachov P (1949) Arch. Biochem. 23: 419

    Google Scholar 

  64. Spotholz CH, Lichtfield JH, Ordal ZJ (1956) Appl. Microbiol. 4: 285

    Google Scholar 

  65. Combs TJ, Guarneri JJ, Pisano MA (1980) Dev. Ind. Microbiol. 21: 373

    Google Scholar 

  66. Cocucci MC, Belloni G, Gianani L (1975) Arch. Microbiol. 105: 17

    Google Scholar 

  67. Ratledge C, Hall MJ (1977) Appl. Envir. Microbiol. 34(2): 230

    Google Scholar 

  68. Turcotte G (1987) Ph. D. Thesis, The University of Western Ontario, London, Ontario

    Google Scholar 

  69. Harrison DEF (1973) CRC Critical Reviews in Microbiology 2: 185

    Google Scholar 

  70. Ishizaki A, Shibai H, Hirose Y (1974) Agr. Biol. Chem. 38(12): 2399

    Google Scholar 

  71. Wimpenny JWT (1969) Biotechnol. Bioeng. 11: 623

    Google Scholar 

  72. Shibai H, Ishizaki A, Kobayashi K, Hirose Y (1974) Agr. Biol. Chem. 38(12): 2407

    Google Scholar 

  73. Akashi K, Ikeda S, Shibai H, Kobayashi K, Hirose Y (1978) Biotechnol. Bioeng. 20(1): 27

    Google Scholar 

  74. Wimpenny JWT, Necklen DK (1971) Biochim. Biophys. Acta. 253

    Google Scholar 

  75. Dawson PSS, Craig BM (1966) Can. J. Microbiol. 12: 775

    Google Scholar 

  76. Yoon SH, Rhee JA (1983) Process Biochem., October 2

    Google Scholar 

  77. Ghose TK, Chotani GK, Ghosh P, Sahai V (1987) Ann. N.Y. Acad. Sc. 506: 459

    Google Scholar 

  78. Illingworth RF, Rose AH, Beckett A (1973) J. Bacteriol. 113(1): 373

    Google Scholar 

  79. Furukawa Y, Kimura S (1972) J. Vitaminol. 18(4): 213

    Google Scholar 

  80. Lehninger AL (1972) Biochemistry, Worth Publishers, Inc., Ch. 23 New York

    Google Scholar 

  81. Vance DE, Vance JE (eds) (1985) Biochemistry of lipids and membranes, Benjamin/Cummings Menlo Park, California

    Google Scholar 

  82. Hunter K, Rose AH (1972) Biochim. Biophys. Acta, 260(4): 639

    Google Scholar 

  83. Jollow D, Kellerman GM, Linnane AW (1968) J. Cell Biol. 37: 221

    Google Scholar 

  84. Mudd JB, Saltzgaber-Muller J (1978) Arch. Biochem. Biophys. 186(2): 359

    Google Scholar 

  85. Glatz BA, Hammond EG, Hsu KH, Baehman L, Bati N, Bednarski W, Brown D, Floetenmeyer MD (1984) AOCS Monogr., 11 Biotechnol. Oils Fats Inc.: 163

    Google Scholar 

  86. Harries PC, Ratledge C (1969) Chem. Ind., 45: 582

    Google Scholar 

  87. Hornei S, Kohler M, Weide H (1972) Zeitschrift für Allgemeine Mikrobiologie, 12(1): 19

    Google Scholar 

  88. Volfova O, Pecka K (1973) Folia Microbiol.: 18

    Google Scholar 

  89. Rattray JB, Schiberi M, Kidby DK (1975) Bacteriol. Rev. 39(3): 197

    Google Scholar 

  90. Gradova NB, Kruchkova AP, Rodionova GS, Mikhaylova VV, Dikanskaya EM (1969) Biotech. Bioeng. Symp. 1: 99

    Google Scholar 

  91. Zalasko MV, Gurinovich ES, Obraztsova NV, Koroleva IF, Bogdanovskaya ZhN, Andreevskaya VD, Andriyashina SS (1974) Khimiya Tverdogo Topliva, 3(5): 146

    Google Scholar 

  92. Brown CM, Rose AH (1969) J. Bacteriol. 99(2): 371

    Google Scholar 

  93. Kates M, Paradis M (1973) Can. J. Biochem. 51: 184

    Google Scholar 

  94. Hansson L, Dostálek M (1986) Appl. Microbiol. Biotechnol. 24(3): 187

    Google Scholar 

  95. Suzuki O (1987) Proceed. World Conf. Biotechnol. Fats Oils Ind., Hamburg, Germany

    Google Scholar 

  96. Chementator: (1988) Chem. Eng., March 28: 13

    Google Scholar 

  97. Welch JW, Burlingame AL (1973) J. Bacteriol. 115(1): 464

    Google Scholar 

  98. Uemura N (1987) Proceed. World Conf. Biotechnol. Fats Oils Ind., Hamburg, Germany

    Google Scholar 

  99. Kaneko H, Hosohara M, Tanaka M, Itoh T (1976) Lipids, 11(12): 837

    Google Scholar 

  100. Stodola FH, Deinema MH, Spencer JFT (1967) Bacteriol. Rev. 31(3): 194

    Google Scholar 

  101. Zalashko MV, Pidoplichko GA (1972) Microbiol. 41(4): 581

    Google Scholar 

  102. Asmer HJ, Lang S, Wagner F, Wray V (1987) Proceed. World Conf. Biotechnol. Fats Oils Ind. Hamburg, Germany

    Google Scholar 

  103. Cooper DG, Paddock DA (1984) Appl. Envir. Microbiol. 47(1): 173

    Google Scholar 

  104. Inoue S (1987) Proceed. World Conf. Biotechnol. Fats Oils Ind., Hamburg, Germany

    Google Scholar 

  105. Duvnjak Z, Cooper DG, Kosaric N (1982) Biotechnol. Bioeng. 24: 165

    Google Scholar 

  106. Botham PA, Ratledge C (1979) J. Gen. Microbiol. 114: 361

    Google Scholar 

  107. Boulton CA, Ratledge C (1980) J. Gen. Microbiol. 121: 441

    Google Scholar 

  108. Boulton CA, Ratledge C (1981) J. Gen. Microbiol. 127: 169

    Google Scholar 

  109. Boulton CA, Ratledge C (1981) J. Gen. Microbiol. 127: 423

    Google Scholar 

  110. Boulton CA, Ratledge C (1983) J. Gen. Microbiol. 129(9): 2863

    Google Scholar 

  111. Evans CT, Ratledge C (1983) Lipids 18(9): 630

    Google Scholar 

  112. Evans CT, Ratledge C (1985) Can. J. Microbiol. 31(11): 1000

    Google Scholar 

  113. Evans CT, Ratledge C (1985) Biotechnol. Genet. Eng. Rev. 3: 349

    Google Scholar 

  114. Evans CT, Ratledge C (1985) Can. J. Microbiol. 31(5): 479

    Google Scholar 

  115. Evans CT, Ratledge C (1985) Can. J. Microbiol. 31(9): 845

    Google Scholar 

  116. Whitworth DA, Ratledge C (1975) J. Gen. Microbiol. 90: 183

    Google Scholar 

  117. Whitworth DA, Ratledge C (1975) J. Gen. Microbiol. 88: 275

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Turcotte, G., Kosaric, N. (1989). Lipid biosynthesis in oleaginous yeasts. In: Bioprocesses and Engineering. Advances in Biochemical Engineering/Biotechnology, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009828

Download citation

  • DOI: https://doi.org/10.1007/BFb0009828

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51446-6

  • Online ISBN: 978-3-540-48132-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics