Skip to main content

Precision of parameter estimation in meander models

  • Part III Modelling Landform Evolution
  • Chapter
  • First Online:
Process Modelling and Landform Evolution

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 78))

  • 256 Accesses

Abstract

This paper is organised in two sections. In the first section a dynamical model for meander migration is developed. It includes one dimensional fluid dynamics (main velocity and secondary flow) and a simple approach for migration mechanisms. The second section is concerned with generic aspects of parameter estimation in nonlinear dynamical systems. It shall be shown that the experimental design is essential for the precision of estimated parameters. Especially the choice of initial conditions and observation times is examined for the example model of meander migration. The methods can be used to improve the precision of calibration for general nonlinear dynamical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackers, P., and F.G. Charlton (1970): Dimensional analysis of alluvial channels with special references to meander length. Journal of Hydraulic Research, 8(3):287–316.

    Google Scholar 

  • Allen, J.R.L (1992): Principles of physical sedimentology. Chapman & Hall.

    Google Scholar 

  • Bernard, R.S., and M.L. Schneider (1992): Depth-averaged numerical modeling for curved channels. Technical Report HL-92-9, Dept. of Army, Waterways Experiment Station, Corps of Engineers, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199.

    Google Scholar 

  • Carson, M.A., and M.F. Lapointe (1983): The inherent asymmetry of river meander planform. Journal of Geology, 91:41–55.

    Google Scholar 

  • Cherry, D.S., P.R. Wilcock, and M.G. Wolman (1996): Evaluation of methods for forecasting planform change and bankline migration in flood-control channels. Technical report, Department of Geography and Environmental Engeineering, John Hopkins University, Baltimore, MD 21218.

    Google Scholar 

  • Ferguson, R.I. (1975): Meander irregularity and wavelength estimation. Journal of Hydrology, 26:315–333.

    Google Scholar 

  • Hjulström, F. (1942): Studien über das Mäander-Problem. Geografiska Annaler, 24:233–269.

    Google Scholar 

  • Howard, A.D. (1992): Modeling channel migration and floodplain sedimentation in meandering streams. In: Carling, P.A., and G.E. Petts (eds.): Lowland floodplain rivers: geomorphological perspectives. Wiley & Sons Ltd.

    Google Scholar 

  • Howard, A.D. (1995): Modelling channel evolution and floodplain morphology. private communication, to be published in ‘Floodplain processes', edited by M. Anderson & D. Walling, Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22903.

    Google Scholar 

  • Hsü, K.J. (1989): Physical Priciples of Sedimentology. A readable textbook for beginners and experts, Springer Verlag.

    Google Scholar 

  • Ikeda, S., G. Parker, and K. Sawai (1981): Bend theory of river meanders, 1. linear development. Journal of Fluid Mechanics, 112:363–377.

    Google Scholar 

  • Johannesson, H., and G. Parker (1989): Linear theory of river meanders. In: Ikeda, S., and G. Parker (eds.): River meandering, American Geophysical Union.

    Google Scholar 

  • Langbein, W.B., and L.B. Leopold (1966): River meanders — theory of minimum variance. Geological Survey Professional Paper 422-H, United States Government Printing Office, Washington.

    Google Scholar 

  • Leopold, L.B., and W.B. Langbein (1966): River meanders. Scientific American, 214:60–70.

    Google Scholar 

  • Leopold, L.B., and T. Maddock (1953): The hydraulic geometry of stream channels and some physiographic implications. Geological Survey Professional Paper, 252:1–57.

    Google Scholar 

  • Malcherek, A. (1995): Numerische Methoden für Strömungen, Stoff-und Wärmetransport. http://www.hamburg.baw.de/hnm/nummeth/index.htm

    Google Scholar 

  • Markham, A.J., and C.R. Thorne (1992): Geomorphology of gravel-bed river bends. In: Billi, P., R.D. Hey, C.R. Thorne, and R. Tacconi (eds.): Dynamics of gravel-bed rivers. John Wiley & Sons.

    Google Scholar 

  • Papoulis, A. (1984): Probability, random variables and stochastic processes. Electrical Enginieering Series. McGraw-Hill Book Company, 2nd ed.

    Google Scholar 

  • Parker, G., K. Sawai, and S. Ikedai (1982): Bend theory of river meanders, 2. nonlinear deformation of finite-amplitude bends. Journal of Fluid Mechanics, 115:303–314.

    Google Scholar 

  • Parker, G. (1976): On the cause and characteristic scales of meandering and braiding in rivers. Journal of Fluid Mechanics, 76(3):457–480.

    Google Scholar 

  • Schumm, S.A. (1963): Sinuosity of alluvial rivers on the Great Plains. Geological Society of America Bulletin, 74:1089–1100.

    Google Scholar 

  • Shannon, C.E., and W. Weaver (1949): The mathematical theory of communication. University of Illinois Press.

    Google Scholar 

  • Vosselman, G. (1992): Relational matching. Lecture Notes in Comp. Science, 628, Springer, Heidelberg.

    Google Scholar 

  • Yang, C.T. (1971): On river meanders. Journal of Hydrology, 13:231–253.

    Google Scholar 

  • Zimmermann, C. (1974): Sohlausbildung, Reibungsfaktoren und Sedimenttransport in gleichförmig gekrümmten und geraden Gerinnen. Dissertation, Fakultät für Bauingenieur-und Vermessungswesen der Universität Karlsruhe.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stefan Hergarten Horst J. Neugebauer

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this chapter

Cite this chapter

Droste, C. (1999). Precision of parameter estimation in meander models. In: Hergarten, S., Neugebauer, H.J. (eds) Process Modelling and Landform Evolution. Lecture Notes in Earth Sciences, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009731

Download citation

  • DOI: https://doi.org/10.1007/BFb0009731

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64932-8

  • Online ISBN: 978-3-540-68307-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics