Minimum convex partition of a polygon with holes by cuts in given directions

  • A. Lingas
  • V. Soltan
Session 8a: Invited Presentation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1178)


Let F be a given family of directions in the plane. The problem to partition a planar polygon P with holes into a minimum number of convex polygons by cuts in the directions of F is proved to be NP-hard if ¦F¦ ≥ 3 and it is shown to admit a polynomial-time algorithm if ¦F¦ ≤ 2.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Asano, M. Sato, T. Ohtsuki, Computational geometry algorithms, in Layout Design and Verification, T. Ohtsuki, ed., North-Holland, Amsterdam, 1986, pp. 295–347.Google Scholar
  2. [2]
    M. Bern, D. Epstein, Mesh generation and optimal triangulation, in Computing in Euclidean Geometry, 2nd ed., D.-Z. Du, F.K. Hwang, eds., World Scientific, Singapore, 1995, pp. 47–123.Google Scholar
  3. [3]
    B. Chazelle, D. P. Dobkin, Optimal convex decomposition, in Computational Geometry, G.T. Toussaint, ed., North-Holland, Amsterdam, 1985, pp. 63–133.Google Scholar
  4. [4]
    B. Chazelle, L. Palios, Decomposition algorithms in geometry, in Algebraic Geometry and Applications, C.L. Bajaj, ed., Springer, New York, 1994, pp. 419–449.Google Scholar
  5. [5]
    V. J. Dielissen V.J.A. Kaldewaij, Rectangular partition is polynomial in two dimensions but NP-complete in three, Inform. Process. Lett. 38 (1991), pp. 1–6.CrossRefGoogle Scholar
  6. [6]
    A. Gorpinevich, V. Soltan, Algorithms for the partition of a polygonal region into trapezoids and convex strips in problems of LSI design, (Russian) Voprosy Kibernet. (Moscow) No. 156 (1991), pp. 45–56.Google Scholar
  7. [7]
    D. H. Greene, The decomposition of polygons into convex parts, in Advances in Computing Research, F.P. Preparata, ed., JAI Press, London, 1983, pp. 235–259.Google Scholar
  8. [8]
    F. Harary, Graph Theory, Addison-Wesley Publ., Massachusetts, 1969.Google Scholar
  9. [9]
    H. Imai, T. Asano, Efficient algorithm for geometric graph search problems, SIAM J. Comput. 15 (1986), pp. 478–494.CrossRefGoogle Scholar
  10. [10]
    J. M. Keil, Decomposing a polygon into simpler components, SIAM J. Comput. 14 (1985), pp. 799–817.CrossRefGoogle Scholar
  11. [11]
    J. M. Keil, J.-R. Sack, Minimum decomposition of polygonal objects, in Computational Geometry, G.T. Toussaint, ed., North Holland, Amsterdam, 1985, pp. 197–216.Google Scholar
  12. [12]
    N. M. Korneenko, G. V. Matveev, N. N. Metel'ski, R. I. Tyškevič, Partitions of polygons, (Russian) Vesci Akad. Navuk BSSR. Ser. Fiz.-Mat. Navuk, 1978, no. 2, pp. 25–29.Google Scholar
  13. [13]
    D. T. Lee, F. P. Preparata, Computational geometry — a survey, IEEE Trans. Comput. C-33 (1984), pp. 1072–1101.Google Scholar
  14. [14]
    D. Lichtenstein, Planar formulas and their uses, SIAM J. Comput. 11 (1982), pp. 329–343.Google Scholar
  15. [15]
    A. Lingas, The power of non-rectilinear holes, Lecture Notes Comput. Sci. Vol. 140, 1982, pp. 369–383.Google Scholar
  16. [16]
    A. Lingas, V. Soltan, Minimum Convex Partition of a Polygon with Holes by Cuts in Given Directions, Technical Report, Lund University, 1996 (avaible at Scholar
  17. [17]
    W. Lipski, Finding a Manhattan path and related problems, Networks 13 (1983), pp. 399–409.Google Scholar
  18. [18]
    W. Lipski, An O(n log n) Manhattan path algorithms, Inf. Process. Lett. 19 (1984), pp. 99–102.CrossRefGoogle Scholar
  19. [19]
    W. Newman, R. Sproull, Principles of Interactive Computer Graphics, 2nd ed., McGraw-Hill, New York, 1979.Google Scholar
  20. [20]
    J. O'Rourke, Art Gallery and Algorithms, Oxford Univ. Press, New York, 1987.Google Scholar
  21. [21]
    J. O'Rourke, K. Supowit, Some NP-hard polygon decomposition problems, IEEE Trans. Inform. Theory 29 (1983), pp. 181–190.Google Scholar
  22. [22]
    T. Pavlidis, Structural Pattern Recognition, Springer, Berlin, 1977.Google Scholar
  23. [23]
    Ch. Prisacaru, P. Soltan, On partition of a planar region into d-convex parts and its application, (Russian) Dokl. Akad Nauk SSSR 262 (1982), pp. 271–273. (English transl. Soviet Math. Dokl. 25 (1982), pp. 53–55.)Google Scholar
  24. [24]
    V. Soltan, Partition of a planar set into a finite number of d-convex parts, (Russian) Kibernetika (Kiev), 1984, no. 6, pp. 70–74. (English transl. Cybernetics 20 (1984), pp. 855–860.)Google Scholar
  25. [25]
    V. Soltan, A. Gorpinevich, Minimum dissection of rectilinear polygon with arbitrary holes into rectangles, Discrete Comput. Geom. 9 (1993), pp. 57–79.CrossRefGoogle Scholar
  26. [26]
    G. T. Toussaint, Computational geometric problems in pattern recognition, in Pattern Recognition. Theory and Applications, J. Kittler, ed., Reidel Publ. Co., Dordrecht, 1982, pp. 73–91.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • A. Lingas
    • 1
  • V. Soltan
    • 2
  1. 1.Dept. Computer ScienceLund UniversityLundSweden
  2. 2.Mathematical InstituteAcademy of SciencesChişinăuMoldova

Personalised recommendations