Advertisement

Graph searching on chordal graphs

  • Sheng-Lung Peng
  • Ming-Tat Ko
  • Chin-Wen Ho
  • Tsan-sheng Hsu
  • Chuan-Yi Tang
Session 4b: Invited Presentation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1178)

Abstract

Two variations of the graph searching problem, edge searching and node searching, are studied on several classes of chordal graphs, which include split graphs, interval graphs and k-starlike graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. ARNBORG, D.G. CORNEIL, and A. PROSKUROWSKI, Complexity of finding embeddings in a k-tree, SIAM J. Alg. Disc. Meth., 8(1987), pp. 277–284.Google Scholar
  2. 2.
    H.L. BODLAENDER, T. KLOKS, and D. KRATSCH, Treewidth and pathwidth of permutation graphs, 20th ICALP, LNCS 700(1993), pp. 114–125.Google Scholar
  3. 3.
    H.L. BODLAENDER and R.H. MOHRING, The pathwidth and treewidth of cographs, SIAM J. Disc. Math., 6(1993), pp. 181–188.CrossRefGoogle Scholar
  4. 4.
    D. BIENSTOCK and P. SEYMOUR, Monotonicity in graph searching, J. Algorithms, 12(1991), pp. 239–245.CrossRefGoogle Scholar
  5. 5.
    F. GAVRIL, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Comb. Theory Ser. B, 16(1974), pp.47–56.CrossRefGoogle Scholar
  6. 6.
    J. GUSTEDT, On the pathwidth of chordal graphs, Discr. Appl. Math. 45(1993), pp. 233–248.CrossRefGoogle Scholar
  7. 7.
    N.G. KINNERSLEY, The vertex separation number of a graph equals its path-width, Inform. Process. Letter, 42(1992), pp. 345–350.CrossRefGoogle Scholar
  8. 8.
    T. KLOKS, Treewidth, Ph.D. Thesis, Utrecht University, The Netherlands, 1993.Google Scholar
  9. 9.
    L.M. KIROUSIS and C.H. PAPADIMITRIOU, Interval graph and searching, Disc. Math. 55(1985), pp. 181–184.CrossRefGoogle Scholar
  10. 10.
    L.M. KIROUSIS and C.H. PAPADIMITRIOU, Searching and pebbling, Theoretical Comp. Scie. 47(1986), pp. 205–218.Google Scholar
  11. 11.
    A. KORNAI and Z. TUZA, Narrowness, pathwidth, and their application in natural language processing, Disc. Appl. Math., 36(1992), pp. 87–92.CrossRefGoogle Scholar
  12. 12.
    A.S. LAPAUGH, Recontamination does not help to search a graph, J. of the Assoc. Comput. Mach., 40(1993), pp. 224–245.Google Scholar
  13. 13.
    N. MEGIDDO, S.L. HAKIMI, M.R. GAREY, D.S. JOHNSON, and C.H. PAPADIMITRIOU, The complexity of searching a graph, J. of the Assoc. Comput. Mach., 35(1988), pp. 18–44.Google Scholar
  14. 14.
    R.H. MOHRING, Graph problems related to gate matrix layout and PLA folding, in: G. TINNHOFER et al., eds., Computational Graph Theory (Springer, Wien, 1990), pp. 17–32.Google Scholar
  15. 15.
    B. MONIEN and I.H. SUDBOROUGH, Min cut is NP — complete for edge weighted trees, Theoretical Comp. Scie. 58(1988), pp. 209–229.Google Scholar
  16. 16.
    T.D. PARSONS, Pursuit-evasion in a graph, in Y. ALAVI and D.R. LICK, eds., Theory and applications of graphs, Springer-Verlag, New York, 1976, pp. 426–441.Google Scholar
  17. 17.
    N. ROBERTSON and P.D. SEYMOUR, Graph minors I. Excluding a forest, J. Comb. Theory Ser. B, 35(1983), pp. 39–61.Google Scholar
  18. 18.
    P. SCHEFFLER, A linear algorithm for the pathwidth of trees, in: R. BODENDIEK and R. HENN, eds., Topics in Combinatorics and Graph Theory (Physica-Verlag, Heidelberg, 1990), pp. 613–620.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Sheng-Lung Peng
    • 1
  • Ming-Tat Ko
    • 2
  • Chin-Wen Ho
    • 3
  • Tsan-sheng Hsu
    • 2
  • Chuan-Yi Tang
    • 1
  1. 1.National Tsing Hua UniversityTaiwan
  2. 2.Academia SinicaTaiwan
  3. 3.National Central UniversityTaiwan

Personalised recommendations