Skip to main content

Optimal line bipartitions of point sets

  • Session 3a: Invited Presentation
  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1178))

Included in the following conference series:

  • 154 Accesses

Abstract

Let S be a set of n points in the plane. We study the following problem: Partition S by a line into two subsets S a and S b such that max {f(S a), f(S b)} is minimal, where f is any monotone function defined over 2S. We first present a solution to the case where the points in S are the vertices of some convex polygon and apply it to some common cases — f(S′) is the perimeter, area, or width of the convex hull of S′S — to obtain linear solutions (or O(n log n) solutions if the convex hull of S is not given) to the corresponding problems. This solution is based on an efficient procedure for finding a minimal entry in matrices of some special type, which we believe is of independent interest. For the general case we present a linear space solution which is in some sense output sensitive. It yields solutions to the perimeter and area cases that are never slower and often faster than the best previous solutions.

Part of this work was done while the first author was visiting INRIA Sophia-Antipolis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pankaj K. Agarwal and M. Sharir. Planar geometric location problems. Algorithmica, 11:185–195, 1994.

    Article  Google Scholar 

  2. Te. Asano, B. Bhattacharya, J. M. Keil, and F. Yao. Clustering algorithms based on minimum and maximum spanning trees. In Proc. 4th Annu. ACM Sympos. Comput. Geom., pages 252–257, 1988.

    Google Scholar 

  3. D. Avis. Diameter partitioning. Discrete Comput. Geom., 1:265–276, 1986.

    Article  Google Scholar 

  4. K. L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on randomized incremental constructions. Comput. Geom. Theory Appl., 3(4):185–212, 1993.

    Google Scholar 

  5. O. Devillers and M. Katz. Optimal line bipartitions of point sets. Research Report 2871, INRIA, BP93, 06902 Sophia-Antipolis, France, 1996. http://www.inria.fr/rapports/sophia/rr-2871.html.

    Google Scholar 

  6. A. Glozman, K. Kedem, and G. Shpitalnik. Finding optimal bipartitions of points, 1994. manuscript.

    Google Scholar 

  7. Alex Glozman, Klara Kedem, and Gregory Shpitalnik. On some geometric selection and optimization problems via sorted matrices. In Proc. 4th Workshop Algorithms Data Struct., volume 955 of Lecture Notes in Computer Science, pages 26–37. Springer-Verlag, 1995.

    Google Scholar 

  8. J. Hagauer and G. Rote. Three-clustering of points in the plane. In T. Lengauer, editor, Proc. 1st Annu. European Sympos. Algorithms (ESA '93), volume 726 of Lecture Notes in Computer Science, pages 192–199. Springer-Verlag, 1993.

    Google Scholar 

  9. J. Hershberger and S. Suri. Finding tailored partitions. J. Algorithms, 12:431–463, 1991.

    Article  Google Scholar 

  10. F. Hurtado, M. Noy, and S. Whitesides. Finding optimal k-partitions for points in convex position. Technical Report MA2-IR-95-0010, Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Barcelona, Spain, 1995.

    Google Scholar 

  11. J. W. Jaromczyk and M. Kowaluk. An efficient algorithm for the Euclidean two-center problem. In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 303–311, 1994.

    Google Scholar 

  12. M. J. Katz. Improved algorithms in geometric optimization via expanders. In Proc. 3rd Israel Symposium on Theory of Computing and Systems, pages 78–87, 1995.

    Google Scholar 

  13. M. J. Katz and M. Sharir. An expander-based approach to geometric optimization. In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 198–207, 1993.

    Google Scholar 

  14. J. S. B. Mitchell and E. L. Wynters. Finding optimal bipartitions of points and polygons. In Proc. 2nd Workshop Algorithms Data Struct., volume 519 of Lecture Notes in Computer Science, pages 202–213. Springer-Verlag, 1991.

    Google Scholar 

  15. C. Monma and S. Suri. Partitioning points and graphs to minimize the maximum or the sum of diameters. In Graph Theory, Combinatorics and Applications (Proc. 6th Internat. Conf. Theory Appl. Graphs), volume 2, pages 899–912, New York, NY, 1991. Wiley.

    Google Scholar 

  16. M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. J. Comput. Syst. Sci., 23:166–204, 1981.

    Article  Google Scholar 

  17. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, NY, 1985.

    Google Scholar 

  18. J. Rokne, S. Wang, and X. Wu. Optimal bipartitions of point sets. In Proc. 4th Canad. Conf. Comput. Geom., pages 11–16, 1992.

    Google Scholar 

  19. Micha Sharir. A near-linear algorithm for the planar 2-center problem. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 106–112, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tetsuo Asano Yoshihide Igarashi Hiroshi Nagamochi Satoru Miyano Subhash Suri

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Devillers, O., Katz, M.J. (1996). Optimal line bipartitions of point sets. In: Asano, T., Igarashi, Y., Nagamochi, H., Miyano, S., Suri, S. (eds) Algorithms and Computation. ISAAC 1996. Lecture Notes in Computer Science, vol 1178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009480

Download citation

  • DOI: https://doi.org/10.1007/BFb0009480

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62048-8

  • Online ISBN: 978-3-540-49633-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics