Skip to main content

Incremental convex hull algorithms are not output sensitive

  • Session 3a: Invited Presentation
  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1178))

Included in the following conference series:

Abstract

A polytope is the bounded intersection of a finite set of half-spaces of ℝd. Every polytope can also be represented as the convex hull conv ν of its vertices (extreme points) ν. The convex hull problem is to convert from the vertex representation to the halfspace representation or (equivalently by geometric duality) vice-versa. Given an ordering v 1 ... v n of the input vertices, after some initialization an incremental convex hull algorithm constructs halfspace descriptions H n-k ... H n where H n is the halfspace description of conv{v 1 ... v i}. Let m i denote |H i|, and let m denote m n. In this paper we give families of polytopes for which \(m_{n - 1} \in \Omega \left( {m^{\sqrt {{d \mathord{\left/{\vphantom {d 2}} \right.\kern-\nulldelimiterspace} 2}} } } \right)\) for any ordering of the input. We also give a family of 0/1-polytopes with a similar blowup in intermediate size. Since m n−1 is not bounded by any polynomial in m, n, and d, incremental convex hull algorithms cannot in any reasonable sense be considered output sensitive. It turns out the same families of polytopes are also hard for the other main types of convex hull algorithms known.

This research supported by FCAR Québec and NSERC Canada

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Alevras, G. Cramer, and M. Padberg. DODEAL. 〈ftp://elib.zib-berlin.de/pub/mathprog/polyth/dda〉

    Google Scholar 

  2. A. Altshuler and M. Perles. Quotient polytopes of cyclic polytopes. Part I: Structure and characterization. Israel J. Math., 36(2):97–125, 1980.

    Google Scholar 

  3. D. Avis, D. Bremner, and R. Seidel. How good are convex hull algorithms? To appear in Comput. Geom.: Theory and Appl., 1996.

    Google Scholar 

  4. D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Disc. Comput. Geom., 8:295–313, 1992.

    Google Scholar 

  5. A. Brøndsted. Introduction to Convex Polytopes. Springer-Verlag, 1981.

    Google Scholar 

  6. G. Ceder, G. Garbulsky, D. Avis, and K. Fukuda. Ground states of a ternary lattice model with nearest and next-nearest neighbor interactions. Physical Review B, 49:1–7, 1994.

    Article  Google Scholar 

  7. T. M. Chan. Output-sensitive results on convex hulls, extreme points, and related problems. In Proc. 11th ACM Symp. Comp. Geom., pages 10–19, 1995.

    Google Scholar 

  8. A. Charnes. The simplex method: optimal set and degeneracy. In An introduction to Linear Programming, Lecture VI, pages 62–70. Wiley, New York, 1953.

    Google Scholar 

  9. B. Chazelle. An optimal convex hull algorithm in any fixed dimension. Disc. Comput. Geom., 10:377–409, 1993.

    Google Scholar 

  10. T. Christof and A. Loebel. porta v1.2.2. April 1995. 〈http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/PORTA/porta.tar〉

    Google Scholar 

  11. A. Deza, M. Deza, and K. Fukuda. On Skeletons, Diameters and Volumes of Metric Polyhedra. Technical report, Laboratoire d'Informatique de l'Ecole Supérieure, January 1996. To appear in Lecture Notes in Computer Science, Springer-Verlag.

    Google Scholar 

  12. M. Dyer. The complexity of vertex enumeration methods. Math. Oper. Res., 8(3):381–402, 1983.

    Google Scholar 

  13. R. Euler and H. Le Verge. Complete linear descriptions of small asymetric travelling salesman polytopes. Disc. App. Math., 62:193–208, 1995.

    Article  Google Scholar 

  14. K. Fukuda. cdd+ Reference manual, version 0.73. ETHZ, Zurich, Switzerland. 〈ftp://ifor13.ethz.ch/pub/fukuda/cdd〉

    Google Scholar 

  15. K. Fukuda, T. M. Liebling, and F. Margot. Analysis of backtrack algorithms for listing all vertices and all faces of a convex polyhedron. To appear in Comput. Geom.: Theory and Appl., 1996.

    Google Scholar 

  16. K. Fukuda and A. Prodon. The double description method revisited. In Lecture Notes in Computer Science, volume 1120. Springer-Verlag, 1996. To appear.

    Google Scholar 

  17. D. Gale. Neighborly and cyclic polytopes. In V. Klee, editor, Proc. 7th Symp. Pure Math., 1961.

    Google Scholar 

  18. B. Grünbaum. Convex Polytopes. Interscience, London, 1967.

    Google Scholar 

  19. V. Klee and G. Minty. How good is the simplex method? In O. Shisha, editor, Inequalities-III, pages 159–175. Academic Press, 1972.

    Google Scholar 

  20. P. McMullen. The maximal number of faces of a convex polytope. Mathematika, 17:179–184, 1970.

    Google Scholar 

  21. T. S. Motzkin, H. Raiffa, G. Thompson, and R. M. Thrall. The double description method. In H. Kuhn and A. Tucker, editors, Contributions to the Theory of Games II, volume 8 of Annals of Math. Studies, pages 51–73. Princeton University Press, 1953.

    Google Scholar 

  22. J. A. Murtha and E. R. Willard. Linear Algebra and Geometry. Holt Rinehart and Winston, New York, 1969.

    Google Scholar 

  23. R. Seidel. Output-size sensitive algorithms for constructive problems in computational geometry. Ph.D. thesis, Dept. Comput. Sci., Cornell Univ., Ithaca, NY, 1986. Technical Report TR 86-784.

    Google Scholar 

  24. G. Swart. Finding the convex hull facet by facet. J. Algorithms, pages 17–48, 1985.

    Google Scholar 

  25. D. K. Wilde. A library for doing polyhederal applications. Technical Report 785, IRISA, Campus Universitaire de Beaulieu-35042 Rennes CEDEX France, 1993. 〈ftp://ftp.irisa.fr/local/api〉

    Google Scholar 

  26. G. M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics. Springer-Verlag, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tetsuo Asano Yoshihide Igarashi Hiroshi Nagamochi Satoru Miyano Subhash Suri

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bremner, D. (1996). Incremental convex hull algorithms are not output sensitive. In: Asano, T., Igarashi, Y., Nagamochi, H., Miyano, S., Suri, S. (eds) Algorithms and Computation. ISAAC 1996. Lecture Notes in Computer Science, vol 1178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009478

Download citation

  • DOI: https://doi.org/10.1007/BFb0009478

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62048-8

  • Online ISBN: 978-3-540-49633-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics